

COMMUNITY VERSION 3.3

Advanced User’s Guide

August 12, 2014
V3.3.0.2

Developmental Testbed Center

National Center for Atmospheric Research

National Centers for Environmental Prediction, NOAA

Global Systems Division, Earth System Research Laboratory, NOAA

 ii

Foreword

This document is the second part of 2014 Gridpoint Statistical Interpolation (GSI) User’s

Guide for experienced users. It includes advanced knowledge, features, and skills of GSI as

well as details of assimilation of specific data types. Users may use as a reference to their

special research topics. To read this guide, users should already read and understand the

content in the GSI User’s Guide.

This version of Advanced GSI User’s Guide was released with version 3.3. It include 10

Chapters and one appendex:

Chapter 1: Overview

Chapter 2: Software Installation

Chapter 3: Advanced Topics on Run and Diagnosis

Chapter 4: GSI Theory

Chapter 5: GSI Code Structure

Chapter 6: Static Background Error Covariance

Chapter 7 Observations

Chapter 8: Satellite Radiance Data Assimilation

Chapter 9 Radar Data Assimilation

Chapter 10 GSI Applications

Appendix A: GSI Namelist: Name, Default value, Explanation

DTC will update the content of this advanced User’s Guide if needed after the release. For

the latest version of this document, please visit the GSI User’s Website at

http://www.dtcenter.org/com-GSI/users/index.php.

Please send questions and comments to gsi_help@ucar.edu.

Editors: Ming Hu, Hui Shao, Donald Stark, Kathryn Newman, Chunhua Zhou

Contributors to this guide:

NOAA/NCEP/EMC: John Derber, Russ Treadon, Mike Lueken, Wan-Shu Wu, Andrew

Collard, Ed Safford

NCAR: Xiang-Yu Huang, Syed Rizvi, Zhiquan Liu, Tom Auligne, Arthur Mizzi

NOAA/ESRL/GSD: Steve Weygandt, Dezso Devenyi, Joseph Olson.

http://www.dtcenter.org/com-GSI/users/index.php
mailto:gsi_help@ucar.edu

 iii

Acknowledgements:

We thank the U.S. Air Force Weather Agency and the National Oceanic and Atmospheric

Administration for their support of this work. . This work is also facilitated by National

Center for Atmospheric Research (NCAR). NCAR is supported by the National Science

Foundation (NSF).

Table of Contents

 iv

Table of Contents

Chapter 1: Overview ... 1

Chapter 2: Software Installation .. 3
2.1 Modifying the GSI Build Environment ... 3
2.2 Understanding the Build System .. 3

2.2.1 Configuration Resource File .. 4
2.2.2 Modification Example... 6

Chapter 3: Advanced Topics on Run and Diagnosis .. 8
3.1 Convergence Information from file fort.220 .. 8
3.2 Use bundle to configure control, state variables and background fields 11
3.3 Using observations station uselist and rejection list in GSI .. 12

3.3.1 surface observation rejection and use list ... 13
3.3.2 aircraft observation rejection ... 14

Chapter 4: GSI Theory ... 16
4.1 3DVAR equations: ... 16
4.2 Iterations to find the optimal results .. 17
4.3 Analysis variables .. 18

Chapter 5: GSI Code Structure .. 19
5.1 Main process .. 19
5.2 GSI background IO (for 3DVAR) .. 22
5.3 Observation ingestion... 23
5.4 Observation innovation calculation .. 24
5.5 Inner iteration ... 25

Chapter 6: Static Background Error Covariance .. 26
6.1 what is background error covariance ... 26
6.2 Processing of background error matrix ... 27
6.3 Apply background error covariance ... 29

Chapter 7 Observations .. 31
7.1 Process BUFR/PrepBUFR Files .. 31

7.1.1 introduction.. 31
7.1.2 Encode, Decode, Append a simple BUFR file .. 33

7.1.2.1 Decoding/reading data from a simple BUFR file .. 33
7.1.2.2 Encoding/writing data into a simple BUFR file ... 41
7.1.2.3 Appending data to a simple BUFR file ... 44

7.1.3 Encode, Decode, Append the PrepBUFR file ... 46
7.1.3.1 Decoding/reading data from a PrepBUFR file ... 46
7.1.3.2 More exmaples on processing PrepBUFR files .. 48

7.3 GSI BUFR interface ... 49
7.3. 1 GSI observation data ingest and process procedure .. 49
7.3.2 The BUFR decoding in GSI read files .. 53

7.4 NCEP generated BUFR files ... 54
7.4.1 Knowledge on NCEP BUFR/PrepBUFR files ... 54
7.4.2 BUFR/PrepBUFR Data Resources for Community Users .. 57

7.5 Observation error adjustment... 58

Table of Contents

 v

Chapter 8: Satellite Radiance Data Assimilation ... 59
8.1. Satellite radiance data ingest and distribution .. 59

8.1.1 link radiance BUFR files to GSI recognized names ... 59
8.1.2 GSI Code to ingest radiance data ... 62
8.1.3 information on ingesting and distribution .. 65

8.2. Radiance observation operator ... 65
8.3. Radiance observation quality control ... 66
8.4. Bias correction for radiance observations ... 68

8.4.1. Bias correction for satellite observations ... 68
8.4.2. The GSI Bias correction procedure and configurations .. 69
8.4.3 Namelist, satinfo, and coefficients for bias correction .. 71
8.4.4 enhanced radiance bias correction ... 74
8.4.5. Utility for Angle Bias Correction outside GSI ... 75
8.4.6. Discussion of FAQ ... 78

8.5. Radiance data analysis monitoring ... 80

Chapter 9 Radar Data Assimilation .. 81
9.1 Prepare Radar Data Files for GSI .. 81

9.1.1 Introduction ... 81
9.1.2. GSI interface to Level II radar velocity ... 82

9.1.2.1 Read observations from Level II radar radial velocity BUFR files .. 82
9.1.2.2 Write Level II radar radial velocity observations to BUFR files ... 84

9.1.3 GSI interface to radar reflectivity .. 84
9.1.3.1 Radar reflectivity preprocess code .. 84
9.1.3.2 Radar reflectivity interface: content and structure .. 85
9.1.3.3 Check the results ... 86

9.2 Analyze Radar Radial Velocity with GSI ... 87
9.3 Analyze Radar Reflectivity with GSI .. 88
9.4 information on radar data quality control .. 90

Chapter 10 GSI Applications ... 91
10.1 Introduction to Global GSI analysis ... 91

10.1.1 The difference between GSI global and regional .. 91
10.1.2 Global GFS scripts .. 92
10.1.3 Sample resuls. ... 93

10.2 Introduction to RTMA analysis ... 94
10.2.1. Prepare first guess file .. 95
10.2.2. Run GSI RTMA analysis .. 98
10.2.3. post-process .. 102
10.2.4. Notes on this RTMA section .. 105

10.3 GSI hybrid .. 105
10.4 GSI 4DVAR and FSO .. 105
10.5 GSI Chem .. 105

Appendix A: GSI Namelist: Name, Default value, Explanation 107

Overview

 1

Chapter 1: Overview

Purpose of the Advanced GSI User’s Guide

This document is the second part of the GSI User’s Guide. For the history of GSI and its

community efforts, please refer to the Overview of the fundamental GSI User’s Guide,

released together with this document.

While the fundamental GSI User’s Guide focuses on basic information for compiling,

running, and diagnosing GSI, this Advanced GSI User’s Guide is intended to help users

who have mastered the fundamental portion of the User’s Guide and would like to apply

GSI for specific research topics that need more advanced knowledge and skills.

Unlike the fundamental GSI User’s Guide, which is released annually with the official

release, the Advanced User’s Guide will initially release with the official release but may

be updated after the release based on needs and contributions from users and developers.

The latest release time and subversion will be indicated on the title page of this document.

Some of the contents of this Advanced User’s Guide are not updated to match the official

release of the GSI code like the fundamential portion. Therefore, users are advised to refer

to the relative content with caution, as there may be differences between the content and

the code. Please contact the GSI help desk with any issues with using this guide.

Some of the sections and chapters have only titles in this release (no content). These are

place hold for important topics of the GSI. The content will be added in the future as

knowledge and resources are available to update the topic. Users and developers are very

welcome to make any contributions to the guide, either with updated content or with new

additions.

This document is intended to provide useful assistance to experienced GSI users and

developers for advancing GSI developerment and research.

Subvesion release log:

Version Release time Modifications

3.3.0.0 06/20/2014 Initial release with official release 3.3

3.3.0.1 07/07/2014 Fix typos in Equation 1-5 in Chapter 4

3.3.0.2 08/12/2014 Fix typos in Table in Section 5.5. Add step 5 in

radar reflectivity analysis in section 9.3

Overview

 2

Structure of this User’s Guide:

The User’s Guide is organized as follows:

Chapter 2 provides detailed information on software installation, including description

of examples for tailoring the building system on non-standard computing platforms.

Chapter 3 contains advanced topics related to running and diagnosing GSI

Chapter 4 illustrates the GSI data assimilation technique and minimization procedure

Chapter 5 introduces major processes and subroutines associated with GSI I/O,

observation ingestion, and innovation calculation.

Chapter 6 illustrates concept of background error covariance, estimation of static

background error covariance as well as how GSI processes background error

information.

Chapter 7 provides information regarding observation processing for GSI. It contains

basic skills for BUFR/PrepBUFR files, including how to encode, decode, and

append new data into these types of files. It also provides information on GSI

BUFR interface, NCEP processes for BUFR/PrepBUFR files, and the observation

error adjustment procedure inside GSI.

Chapter 8 discusses radiance data assimilation in GSI, including data ingestion, quality

control, bias correction, and other associated procedures.

Chapter 9 discusses radar data assimilation in GSI.

Chapter 10 describes various GSI operational applications.

Appendix A contains a complete list of the GSI namelist with explanations and default

values.

Software Installation

 3

Chapter 2: Software Installation

2.1 Modifying the GSI Build Environment

The GSI build system is designed to compile on most standard Unix/Linux systems.

Typically, if the WRF model builds on a system, GSI will build there as well. The lack of

standardization of Linux HPC environments, specifically from big vendors such as SGI and

IBM, may necessitate minor customization of the GSI build settings for those computing

environments.

Typical build problems seen can be traced back to issues with the location of libraries, MPI

wrappers for the compiler, or the support utilities such as cpp. These sort of issues can

usually be solved by customizing the default configuration file settings. Unfortunately this

may involve an iterative process where the build parameters are modified, the compile

script is run, build errors diagnosed, and the process repeated.

2.2 Understanding the Build System

The GSI build system uses a collection of data files and scripts to create a configuration

resource file that defines the local build environment.

At the top most level there are four scripts. The clean script removes everything created by

the build. The configure script takes local system information and queries the user to

select from a collection of build options. The results of this are saved into a resource file

called configure.gsi. Once the configure.gsi file is created, the actual build is initiated

by running the compile script. The compile script then calls the top-level makefile,

substitutes in settings from the configure file, and builds the source code.

Name Content
makefile Top-level makefile
arch/ Build options and machine architecture specifics
clean Script to clean up the directory structure
configure Script to configure the build environment for compilation.

Creates a resource file called configure.gsi
compile Script for building the GSI system. Requires the existence

of the configure.gsi prior to running

The compile script uses the resource file configure.gsi to set paths and environment

variables required by the compile. The configure script generates the resource file

configure.gsi by calling the Perl script Config.pl, located in the arch/ directory. The

script Config.pl combines the build information from the files in the arch/ directory with

Software Installation

 4

machine specific and user provided build information to construct the configure.gsi

resource file.

A “clean” script is provided to remove the build objects from the directory structure.

Running ./clean scrubs the directory structure of the object and module files. Running a

clean-all ./clean –a removes everything generated by the build, including the library files,

executables, and the configure resource file. Should the build fail, it is strongly

recommended that the user run a ./clean –a prior to rerunning the compile script.

The arch/ directory contains a number of files used to construct the configuration resource

file configure.gsi.

File name Description
preamble Uniform requirements for the code. Currently only contains

shell information and comments.
configure.defaults Selection of compilers and options.

Users can edit this file if a change to the compilation

options or library locations is needed. It can also be

edited to add a new compilation option if needed.
postamble Standard compilation (“make”) rules and dependencies

Most users will not need to modify any of these files unless experiencing significant build

issues. Should a user require a significant customization of the build for their local

computing environment, those changes would be saved to the configure.defaults file

only after first testing these new changes in the temporary configure.gsi file.

2.2.1 Configuration Resource File

The configuration resource file configure.gsi contains build information, such as

compiler flags and paths to system libraries, specific to a particular machine architecture

and compiler.

To illustrate its contents, lets look at the resource for the Linux Intel/gcc build.

Settings for Linux x86_64, Intel/gnu compiler (ifort & gcc) (dmpar,optimize)#

The header describes the overall build environment

 Linux x86 with 64 bit word size

 Uses Intel Fortran and GNU C compilers

The link path points to an Intel version of NetCDF and the OpenMP libraries.

LDFLAGS = -Wl,-rpath,/usr/local/netcdf3-ifort/lib -openmp

The code directory location and include directory:

COREDIR = $HOME/comGSI_v3.3

Software Installation

 5

INC_DIR = $(COREDIR)/include

Compiler definitions

 Intel ifort Fortran compiler

 GNU gcc C compiler

SFC = ifort

SF90 = ifort -free

SCC = gcc

The include paths for GSI source code and NetCDF:

INC_FLAGS = -module $(INC_DIR) -I $(INC_DIR) -I /usr/local/netcdf3-ifort/include

The default Fortran compiler flags for the main source code:

FFLAGS_DEFAULT = -fp-model precise -assume byterecl -convert big_endian

FFLAGS_FULLOPT = -O3

FFLAGS = $(FFLAGS_OPT) $(FFLAGS_DEFAULT) $(INC_FLAGS) $(LDFLAGS) –DLINUX

Note that the flag ‘convert big_endian” switches the byte order from the native “little

endian” to “big endian.” This allows GSI to ingest “big endian” binary files and there by

maintaining compatibility with legacy NOAA output.

The default Fortran compiler flags for the external libraries:

FFLAGS_BACIO = -O3 $(FFLAGS_DEFAULT)

FFLAGS_BUFR = -O3 $(FFLAGS_DEFAULT) $(FFLAGS_i4r8)

CFLAGS_BUFR = -O3 -DUNDERSCORE

FFLAGS_CLOUD = -O3 $(FFLAGS_DEFAULT)

FFLAGS_CRTM = -O2 $(FFLAGS_DEFAULT)

FFLAGS_GFSIO = -O3 $(FFLAGS_DEFAULT) $(FFLAGS_i4r4)

FFLAGS_SFCIO = -O3 $(FFLAGS_DEFAULT) $(FFLAGS_i4r4)

FFLAGS_SIGIO = -O3 $(FFLAGS_DEFAULT) $(FFLAGS_i4r4)

FFLAGS_SP = -O3 $(FFLAGS_DEFAULT) $(FFLAGS_i4r8)

FFLAGS_W3 = -O3 $(FFLAGS_DEFAULT)

The default CPP path and flags. If your system has multiple versions of cpp and you do not

wish to use the version in your path, it may be necessary to specify the specific version

here

CPP = cpp

CPP_FLAGS = -C -P -D$(BYTE_ORDER) -D_REAL8_ -DWRF -DLINUX

CPP_F90FLAGS = -traditional-cpp -lang-fortran

The MPI compiler definitions:

DM_FC = mpif90 –f90=$(SFC)

DM_F90 = mpif90 –free –f90=$(SFC)

DM_CC = gcc

A few comments should be made here about the use of the mpif90 wrapper to invoke the

“parallel” compiler build. The default version of the build shown here has the additional

flag –f90=$(SFC) following the call to mpif90. This flag specifies what compiler is to

be used for the parallel build. In this example SFC = ifort there by telling the script to

use the Intel compiler. This is the standard with the open source versions of MPI such as

MPICH2 and OPENMPI. Supercomputer venders such as SGI, CRAY, and IBM no longer

follow this convention. Depending on the vendor, including the –f90= flag results in, at

the least, compiler warnings, and at most, compiler errors. Because of this situation, the

Software Installation

 6

release code has an extra build option for each of the compilers ,“Vendor supplied MPI,”

which removes the –f90= flag from the build rules.

Unfortunately this is not the end of this story. The two vendors SGI MPT and IBM PE have

done away with the mpif90 wrapper completely and instead prefer to call the Intel

compiler directory with an additional MPI flag:

DM_FC = ifort

DM_F90 = ifort –free

 This will be addressed in next section illustrating who to modify the build rules.

 The default C compiler flags:

CFLAGS = -O0 -DLINUX -DUNDERSCORE

CFLAGS2 = -DLINUX -Dfunder -DFortranByte=char -DFortranInt=int -DFortranLlong='long

long'

The default library paths and names

 Variable LAPACK_PATH needs to point to the MKL library location

 The library names may be different on other systems

MYLIBsys = -L$(LAPACK_PATH) -mkl=sequential

NetCDF path information

 Older versions of NetCDF only have the single library –lnetcdf. If you are using an

older version you may need to remove the first library name.

NETCDFPATH = /usr/local/netcdf3-ifort

NETCDFLIBS = -lnetcdff -lnetcdf $(NETCDF_PATH)

It should not be necessary to modify anything below the NetCDF environment variables.

2.2.2 Modification Example

To demonstrate how one would go about modifying the configuration resource file, the

generic Linux/Intel configuration will be ported to build on an SGI MPT Linux cluster

called Zeus. Zeus comes with a vender-supplied version of MPI, which necessitates

modification of the MPI paths.

The first change is that Zeus does not use the traditional MPI wrappers such as mpif90 to

invoke the compiler. Instead the Intel compiler is called directly with an additional –lmpi

flag to specify an MPI build. Therefore the DM compiler definitions become:

DM_FC = ifort

DM_F90 = ifort –free

DM_CC = gcc

Next, additional link flags for MPI are needed. These are in bold.

LDFLAGS = -Wl,-rpath,/usr/local/netcdf3-ifort/lib -L$MPI_ROOT/lib -lmpi -openmp

Software Installation

 7

Then add the path to the MPI include directory, along with the additional Fortran flag.

FFLAGS_DEFAULT = -msse2 -fp-model precise -assume byterecl -I$MPI_ROOT/include

An equivalent include path for the C flags are also needed.

CFLAGS = -O0 -DLINUX -DUNDERSCORE -I$MPI_ROOT/include

These changes should be saved to the users configure.gsi resource file and tested. Once

they are confirmed to work, they may be moved into the configure.defaults file located

in the arch/ directory as a new build target.

To save your new build configuration, open the file configure.defaults, located in the

arch/ directory. You will notice that it contains a collection of platform/compiler specific

entries. The first entry is for the IBM platform, using the xlf compiler with 64-bit word

size. This entry is indicated by a label at the top of the block starting with the tag #ARCH.

For the 64-bit IBM build, the tag is:

 #ARCH AIX 64-bit #dmpar

The block for the 64-bit IBM build is immediately followed by the 32-bit IBM build entry,

which is indicated by the tag:

 #ARCH AIX 32-bit #dmpar

with each subsequent build specification is delineated by a similar tag.

For our port of the generic Intel build to Zeus, locate the tag for the Linux/Intel build with

64 bit words. Its header looks like this:

#ARCH Linux x86_64, Intel compiler (ifort & gcc) # (dmpar,optimize)

Duplicate this entry and give it a unique name by modifying the ARCH entry.

#ARCH Linux x86_64, Intel compiler SGI MPT (ifort & gcc) #

(dmpar,optimize)

Then update the variables to match the settings in the configure.gsi resource file tested

previously, and save your changes. Now when you run the ./configure script, there will be

a new build option for an SGI MPT build.

Advanced Topics on Run and Diagnosis

 8

Chapter 3: Advanced Topics on Run and Diagnosis

The basic skills of running GSI and diagnosising GSI results are introduced in the Chapter

3 and Chapter 4 of the GSI User’s Guide. This chapter discusses some compilex issues for

advanced users to further tune and diagnosis GSI runs.

3.1 Convergence Information from file fort.220

In file fort.220, users can find more detailed minimization information about each

iterations. The following example uses the first two iterations to explain the meaning of

each value:

Minimization iteration 0

1)
 J= 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00

 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00

 0.000000000000000000E+00 0.000000000000000000E+00 0.118329009942697698E+05

 0.190285043373867524E+05 0.401338098573457983E+05 0.468178247339593265E+04

 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00

 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00

 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00

 0.185513606236281089E+05 0.100380070802053093E+06 0.000000000000000000E+00

 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00

 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00

 0.000000000000000000E+00 0.000000000000000000E+00

2)
 b=-0.310927744401462716E+04 0.000000000000000000E+00 0.000000000000000000E+00

 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00

 0.000000000000000000E+00 0.000000000000000000E+00 0.410038969466198277E+06

 0.723694789994664703E+06 0.287063341578062015E+06 0.294343224843158402E+05

 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00

 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00

 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00

 0.357063077297121385E+06 0.259969713154007923E+08 0.000000000000000000E+00

 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00

 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00

 0.000000000000000000E+00 0.000000000000000000E+00

3)
 c= 0.310927744401462659E+08 0.000000000000000000E+00 0.000000000000000000E+00

 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00

 0.000000000000000000E+00 0.000000000000000000E+00 0.595529299391540965E+08

 0.968629709661563464E+08 0.320963665012150593E+08 0.207128030095876056E+07

 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00

 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00

 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00

 0.141290320912310097E+09 0.325532123706306098E+11 0.000000000000000000E+00

 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00

 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00

 0.000000000000000000E+00 0.000000000000000000E+00

4)
EJ= 0.277433945264109695E+02 0.000000000000000000E+00 0.000000000000000000E+00

 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00

 0.000000000000000000E+00 0.000000000000000000E+00 0.111001385595905754E+05

 0.177294227112127074E+05 0.396140623480684926E+05 0.462763172936301229E+04

 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00

 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00

 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00

 0.179761712946645360E+05 0.741628809765858670E+05 0.000000000000000000E+00

Advanced Topics on Run and Diagnosis

 9

 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00

 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00

 0.000000000000000000E+00 0.000000000000000000E+00

5)
 stepsize estimates = 0.100000000000000005E-03 0.944604610006952448E-03

0.944604610006930960E-03

 stepsize stprat = 0.894135600291783517E+00 0.227490031410343044E-13

 stepsize guesses = 0.100000E-03 0.900000E-04 0.110000E-03 0.000000E+00 0.944605E-03

0.935159E-03 0.954051E-03

 penalties = 0.000000E+00 0.559315E+03 -0.552732E+03 0.588939E+04 -0.234810E+05

-0.234780E+05 -0.234780E+05

pcgsoi: gnorm(1:2) 3.109277444014627486E+07 3.109277444014627486E+07

costterms Jb,Jo,Jc,Jl = 1 0 0.000000000000000000E+00 1.946084290880794579E+05

0.000000000000000000E+00 0.000000000000000000E+00

cost,grad,step,b,step? = 1 0 1.946084290880794579E+05 5.576089529423489694E+03

9.446046100069309653E-04 0.000000000000000000E+00 good

estimated penalty reduction this iteration 1 0 2.937037807406784850E+04

1.509203800251368577E-01%

penalty and grad reduction WRT outer and initial iter= 1 0 1.000000000000000000E+00

1.000000000000000000E+00 1.000000000000000000E+00

1.000000000000000000E+00

Minimization iteration 1

 J= 0.277433945264109712E+02 0.000000000000000000E+00 0.000000000000000000E+00

 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00

 0.000000000000000000E+00 0.000000000000000000E+00 0.111001385595905754E+05

 0.177294227112127073E+05 0.396140623480684925E+05 0.462763172936301231E+04

 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00

 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00

 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00

 0.179761712946645356E+05 0.741628809765858657E+05 0.000000000000000000E+00

 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00

 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00

 0.000000000000000000E+00 0.000000000000000000E+00

 b=-0.103454706240741566E+06 0.000000000000000000E+00 0.000000000000000000E+00

 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00

 0.000000000000000000E+00 0.000000000000000000E+00 0.471859414082640217E+06

 0.836887408435857958E+06 0.444144650683562874E+06 0.493857599036264164E+05

 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00

 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00

 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00

 0.143436922590024884E+06-0.241501731777713210E+08 0.000000000000000000E+00

 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00

 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00

 0.000000000000000000E+00 0.000000000000000000E+00

 c= 0.744926644276673220E+08 0.000000000000000000E+00 0.000000000000000000E+00

 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00

 0.000000000000000000E+00 0.000000000000000000E+00 0.187038212807235956E+09

 0.245074032578180438E+09 0.116810874950575594E+09 0.631952836573825778E+07

 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00

 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00

 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00

 0.327987495483898158E+09 0.597416983300266383E+11 0.000000000000000000E+00

 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00

 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00

 0.000000000000000000E+00 0.000000000000000000E+00

EJ= 0.907421173071728001E+02 0.000000000000000000E+00 0.000000000000000000E+00

 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00

 0.000000000000000000E+00 0.000000000000000000E+00 0.104139003066849756E+05

 0.165779309617118123E+05 0.390129888433980952E+05 0.456584643970885767E+04

 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00

 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00

 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00

 0.175622634769410845E+05 0.567994645981838240E+05 0.000000000000000000E+00

 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00

 0.000000000000000000E+00 0.000000000000000000E+00 0.000000000000000000E+00

 0.000000000000000000E+00 0.000000000000000000E+00

 stepsize estimates = 0.944604610006930965E-03 0.577090170662210155E-03

0.577090170662210132E-03

 stepsize stprat = 0.636840580602851869E+00 0.386854261310281249E-16

Advanced Topics on Run and Diagnosis

 10

 stepsize guesses = 0.944605E-03 0.850144E-03 0.103907E-02 0.000000E+00 0.577090E-03

0.571319E-03 0.582861E-03

 penalties = 0.000000E+00 -0.367282E+04 0.475604E+04 0.120164E+05 -0.819848E+04

-0.819646E+04 -0.819646E+04

pcgsoi: gnorm(1:2) 3.502903930399505794E+07 3.502903930399504304E+07

costterms Jb,Jo,Jc,Jl = 1 1 2.774339452641097026E+01 1.652103076194851892E+05

0.000000000000000000E+00 0.000000000000000000E+00

cost,grad,step,b,step? = 1 1 1.652380510140116094E+05 5.918533543369932886E+03

5.770901706622101049E-04 1.126597414824659582E+00 good

estimated penalty reduction this iteration 1 1 2.021491427007579478E+04

1.038748134641514359E-01%

penalty and grad reduction WRT outer and initial iter= 1 1 8.490796199748631423E-01

1.061412933228467859E+00 8.490796199748631423E-01 1.126597414824660026E+00

For each inner iteration, there are 5 section of outputs. The 1
st
 iteration is labeled with

numbers 1 to 5, with a detailed explanation below:

1 – 4) detailed information on the cost function (J=), b term for estimate stepsize

(b=), c term for estimate stepsize (c=), estimate terms in penalty (EJ). There are

32 (8 + number of observation types) items listed in each and the meanings of

these items are:

1 contribution from background, satellite radiance bias, and

precipitation bias

2 place holder for future linear linear term

3 contribution from dry pressure constraint term (Jc)

4 contribution from negative moisture constraint term (Jl/Jq)

5 contribution from excess moisture term (Jl/Jq)

6 contribution from negative gust constraint term

7 contribution from negative vis constraint term

8 contribution from negative pblh constraint term

9-32: contributions to Jo from different observation types:

9 contribution from ps observation term

10 contribution from t observation term

11 contribution from w observation term

12 contribution from q observation term

13 contribution from spd observation term

14 contribution from srw observation term

15 contribution from rw observation term

16 contribution from dw observation term

17 contribution from sst observation term

18 contribution from pw observation term

19 contribution from pcp observation term

20 contribution from oz observation term

21 contribution from o3l observation term (not used)

22 contribution from gps observation term

23 contribution from rad observation term

24 contribution from tcp observation term

25 contribution from lagrangian tracer

26 contribution from carbon monoxide

27 contribution from modis aerosol aod

28 contribution from level modis aero aod

29 contribution from in-situ pm2_5 obs

Advanced Topics on Run and Diagnosis

 11

30 contribution from gust monoxide

31 contribution from vis aerosol aod

32 contribution from pb1h modis aero aod

For further understand of these terms, it is suggested that the users check

stpcalc.f90 for the code including the above information.

Some terms in section 5 are explained below:

 stepsize estimates: final step size estimates

 stepsize stprat: convergence in stepsize estimation

 gnorm(1:2): 1=(norm of the gradient)
2
, 2= (norm of the gradient)

2

 Jb,Jo,Jc,Jl: the values of cost function, background term (Jb), observations

term (Jo), dry pressure constraint term (Jc), and negative and excess moisture term

(Jl).

 cost,grad,step,b : see explanations in the 1
st
 part of this section.

 estimated penalty reduction this iteration:

(penalty current solution- estimate of penalty for new solution),

(penalty current solution- estimate of penalty for new solution)/(original penalty)

 penalty and grad reduction WRT outer and initial iter=

Penalty reduction to the 1
st
 inner loop value, Grad reduction to the 1

st
 inner loop value ,

Penalty reduction to the original (1
st
 outer) value, Grad reduction to the original (1

st
 outer)

value

3.2 Use bundle to configure control, state variables and background fields

Since the GSI release version 3.0, the control variables, state variables, and background

fields can be configured through a new info file named “anavinfo”. Different GSI

applications need a different anavinfo file to setup the control variables, state variables, and

background fields. In the ./fix directory of the release package, there are many example

anavinfo files for different GSI applications. Because this is a work in progress, users

should use one of the sample anavinfo files instead of making a new one. The released GSI

run script has added the link for this new info file. Users should be able to use this without

any problem.

Below is an example of an avaninfo file for an ARW (anavinfo_arw_netcdf) case:

met_guess::

!var level crtm_use desc orig_name

 cw 30 10 cloud_condensate cw

ql 30 10 cloud_liquid ql

qi 30 10 cloud_ice qi

qr 30 10 rain qr

qs 30 10 snow qs

qg 30 10 graupel qg

Advanced Topics on Run and Diagnosis

 12

::

state_vector::

!var level itracer amedge source funcof

 u 30 0 no met_guess u

 v 30 0 no met_guess v

 tv 30 0 no met_guess tv

 tsen 30 0 no met_guess tv,q

 q 30 1 no met_guess q

 oz 30 1 no met_guess oz

 cw 30 1 no met_guess cw

 p3d 31 0 yes met_guess p3d

 ps 1 0 no met_guess p3d

 sst 1 0 no met_guess sst

::

control_vector::

!var level itracer as/tsfc_sdv an_amp0 source funcof

 sf 30 0 1.00 -1.0 state u,v

 vp 30 0 1.00 -1.0 state u,v

 ps 1 0 0.50 -1.0 state p3d

 t 30 0 0.70 -1.0 state tv

 q 30 1 0.70 -1.0 state q

 oz 30 1 0.50 -1.0 state oz

 sst 1 0 1.00 -1.0 state sst

 cw 30 1 1.00 -1.0 state cw

 stl 1 0 1.00 -1.0 motley sst

 sti 1 0 1.00 -1.0 motley sst

::

There are three sections in this file:

met_guess:: section to configure background fields

state_vector:: section to configure state variables

control_vector:: section to configure control variables

In each section, the 1
st
 column sets up the variable name and 2

nd
 column sets up the vertical

levels. The 4
th

 column in the section control_vector is the normalized scale factor for the

background error variance.

3.3 Using observations station uselist and rejection list in GSI

The GSI tries to use all available observations but has also to make significant efforts to

avoid bad observations getting into the analysis. The data quality control before GSI and

the gross check inside GSI are two major ways to find and toss the bad observations. In

addition, GSI can also use station rejection list and uselist to further control which data

should be used in the GSI. The rejection list assumes all observations should be used in the

GSI analysis except ones in the rejection list, while the uselist assumes all observations

should NOT be used except ones in the uselist.

Advanced Topics on Run and Diagnosis

 13

3.3.1 surface observation rejection and use list

GSI has many kinds of surface rejection list and uselist files. Those files are listed and

explained in the following table. If those files are not existing in a GSI run, then the

function of using rejection list and uselist will be turned off automatically.

File name used in

GSI

Rejection list

and uselist

array in GSI

Content Sample files in fix directory

mesonetuselist cprovider mesonet provider names

from the uselist

nam_mesonet_uselist.txt

w_rejectlist w_rjlist station names from the

reject list for wind

new_rtma_w_rejectlist

t_rejectlist t_rjlist station names from the

reject lists for temperature

new_rtma_t_rejectlist

t_day_rejectlist t_day_rjlist new_rtma_t_day_rejectlist

t_night_rejectlist t_night_rjlist new_rtma_t_night_rejectlist

p_rejectlist p_rjlist station names from the

reject list for surface

pressure

new_rtma_p_rejectlistmore

q_rejectlist q_rjlist station names from the

reject lists for specific

humidity

new_rtma_q_rejectlist

q_day_rejectlist q_day_rjlist new_rtma_q_day_rejectlist

q_night_rejectlist q_night_rjlist new_rtma_q_night_rejectlist

mesonet_stnuselist csta_winduse 'good' mesonet station

names from the station

uselist

nam_mesonet_stnuselist.txt

wbinuselist csta_windbin wind direction stratified

wind accept lists

new_rtma_wbinuselist

Note, this table is based on the subroutine init_rjlists in file sfcobsqc.f90.

At the beginning of subroutine read_prepbufr, the subroutine init_rjlists is called to read

station names from the rejection list and uselist files. When a surface observation is read in,

subroutine get_usagerj is called to compare the station name with the rejection list and

uselist to reset the usage flag of the observation.

For rejection list of temperature, moisture, surface pressure, and wind observation other

than mesonet wind:

 if incoming usage value is >=6. then do nothing since read_prepbufr has already

flagged this observation and assigned a specific usage value to it;

 if usage value is < 6 and those observations are found in the rejection list, set

usage=5000.

 if usage value is < 6 and those observations are not found in the rejection list, keep

the original usage value.

Advanced Topics on Run and Diagnosis

 14

Now, only mesonet wind observation has both uselist and rejection list, the details of apply

those lists are if usage value is < 6, then:

 set usage = 6000 and check if this wind observation is found in one of the three

uselist:

o mesonet provider names uselist

o 'good' mesonet station names uselist

o wind direction stratified wind accept lists

if found this station in uselist, then set original usage value, otherwise, the usage

flag of this station is 6000.

 After uselist check, all mesonet observations then go through the rejection list just

as other surface wind observations to check if toss this station. So, the stations

flagged to use in uselist check may be flagged to large value again in the rejection

list.

As a background knowledge, the observation with usage flag larger than outer loop number

will not be used in the GSI analysis. The above check of the rejection list and uselist are

summarized in the following table:

Observation type List type Rejection list and

uselist array in GSI

If station name match,

Usage flag change to

Temperature:

Reject list t_rjlist

t_day_rjlist

t_night_rjlist

r5000

r5100

r5100

Moisture

Reject list q_rjlist

q_day_rjlist

q_night_rjlist

r5100

r5100

Ps Reject list p_rjlist r5000

surface wind

other than mesonet

Reject list w_rjlist r5000

Mesonet wind

Uselist

Set all mesonet obs to

usage_rj=r6000, then

 cprovider

 csta_winduse

 csta_windbin

usage_rj0

usage_rj0

usage_rj0

Reject list w_rjlist r6100

r6200

3.3.2 aircraft observation rejection

GSI also has rejection list for aircraft observations (PrepBUFR type 129 to 140 and 229 to

240), which are listed and explained in the following table. Again, if those files are not

existing in a GSI run, then the function of using rejection list and uselist will be turned off

automatically.

File name used in Array in GSI Content Sample files in fix directory

Advanced Topics on Run and Diagnosis

 15

GSI

current_bad_aircraft t_aircraft_rjlist Aircraft tag number from

the reject list for

temperature

rap_current_bad_aircraft.txt

w_aircraft_rjlist Aircraft tag number from

the reject list for wind

q_aircraft_rjlist Aircraft tag number from

the reject list for moisture

The rejection lists for aircraft are used in the same way just like the rejection list for surface

data. But the rejection list for temperature, wind, and moisture are save in the same file.

GSI Theory

 16

Chapter 4: GSI Theory

The GSI was developed originally as a three-dimensional variational (3DVAR) data

assimilation system. It has been evolving to a Ensemble-Var hybrid system in recent years.

As a reference for users to understand the basic GSI analysis procedure, a brief summary of

the 3DVAR mathematical theory and the minimization steps used in the GSI is given in

this Chapter.

4.1 3DVAR equations:

The basic 3DVAR equatrion is:

()

 ()

()

 () (1)

where:

a
x : Analysis fields

b
x : Background fields

B : Background error covariance matrix

H : Observation operator

o
o : Observations

O : Observation error covariance

Jc: Constraint terms (e.g., dynamical constraint, moisture constraint)

Define an analysis increment (x=)
a b

x x x  , then equation (1) becomes:

(())

 (()) (2)

By assuming the linearity of the observation operator H, equation (2) can be written as:

(())

 (()) (3)

Next, define the observation innovation as
o b

o o H x  , equation (3) becomes:

() () (4)

GSI Theory

 17

4.2 Iterations to find the optimal results

To improve convergence ,GSI preconditions its cost function by defining a new variable
1

y B x


 . Equation (4), in terms of the new variable y, becomes:

() () (5)

Using the chain rule, the gradients of background and observation parts of the cost function

(4) with respect to x and cost function (5) with respect to y have the form:

1 1

()
T

x
J B x H O H x o

 
    (6)

 1
()

T T T

y
J B y B H O HBy o


   

x
B J  (7)

Equations (6) and (7) are simultaneously minimized by employing an iterative Conjugate

Gradient process.

Start by assuming:

 0 0
0x y 

Then iterate over n:

 () ()

Dir∙ x
n
 = yJ

n
 + βDir∙ x

n-1

Dir∙ y
n
 = xJ

n
 + βDir∙ y

n-1

x
n

= x
n-1

+ αDir∙x
n

y
n

= y
n-1

+ αDir∙y
n

Until either the maximum number of iterations has been reached or the gradient is

sufficiently minimized.

During the above iteration, the  is calculated in subroutine pcgsoi and the stepsize () is

calculated in subroutine stpcalc.

Please note that the current version GSI has more minimization options in addition to the

one described above. Such as:

 Minimize cost function using sqrt(B) preconditioner when namelist variable lsqrtb

is set to true.

 Minimization using Bi-conjugate gradient for minimization when namelist variable

lbicg is set to true

GSI Theory

 18

4.3 Analysis variables

Typically, there are seven analysis variables used in GSI analysis:

Stream function (

Unbalanced velocity potential (

Unbalanced virtual temperature (T)

Unbalanced surface pressure (P)

Pseudo relative humidity [qoption =1] or normalized relative humidity [qoption=2]

Ozone mixing ratio (only for global GSI)

Cloud condensate mixing ratio (only for global GSI)

With broader application of GSI for chemical data assimilation, some new variables, such

as trace gases, aerosols, and chemistry are added as analysis variables. Also, gust and

visibility were added as analysis variables for RTMA application.

GSI Code Structure

 19

Chapter 5: GSI Code Structure

This Chapter introduces the basic code structure of the GSI. Section 5.1 describes the main

processes of the GSI consisting of the three main routines. Sections 5.2 to 5.5 introduce the

code related to four important parts of GSI: background IO, observation ingestion,

observation innovation calculation, and minimization iteration.

5.1 Main process

At the top most level of abstraction, the GSI code is divided into three phases; the

initialization, the run, and the finalize phase. The philosophy behind this division is to

create a modular program structure with tasks that are independent of one another.

The main top-level driver routine is called gsimain and is located in the file gsimain.f90.

Ninety percent of gsimain.f90 is a variety of useful Meta data.

 Major change history

 List of input and output files

 List of subroutines and modules

 List of external libraries

 Complete list of exit states

 A discussion of important namelist options

Possibly the most important of these is the list of exit codes. Should the GSI run fail from

an internal error, the exit code may provide sufficient insight to resolve the issue. The final

lines of gsimain.f90 consist of the three main calls to initialize, run and finalize. The

table below summarizes each of these phases.

GSI Code Structure

 20

gsimain.f90 main steps in each call

call gsimain_initialize

(gsimod.F90)

 gsi_4dcoupler_parallel_init

 MPI initialize

 Initialize defaults of variables in modules

 Read in user input from namelist

 4DVAR setup if it is true (not supported)

 Check user input for consistency among

parameters for given setups

 Optional read in namelist for single observation

run

 Write namelist to standard out

 If this is a wrf regional run, the run interface

with wrf:
call convert_regional_guess (details in section 6.2.2)

 Initialize variables, create/initialize arrays

 Initialize values in radinfo and aeroinfo

call gsimain_run

(gsimod.F90)

 Call the main GSI driver routine

 call gsisub(mype)

 (check next page for steps in gsisub)

If 4DVAR, then:

call gsi_4dcoupler_final_traj

call gsimain_finalize

(gsimod.F90)

 Deallocate arrays

 MPI finialize

GSI Code Structure

 21

GSI main process (continue)

subroutine gsisub (gsisub.F90)

 high level driver for GSI

If not ESMF

 Allocate grid arrays

 Get date, grid, and other information

from background files

End if not ESMF

 If single observation test:

Create prep.bufr file with single obs

in it

 If regional analysis:

Read in Level 2 land radar winds

and create radar wind superob file

call radar_bufr_read_all

 If initial pass:

Read info files for assimilation of

various observations

 If initial pass:

Computer random number for

precipitation forward model

 Complete setup and execute external

and internal minimization loops
if (lobserver) then

if initial pass: call observer_init

 call observer_run

if last pass: call observer_finalize
else

call glbsoi(mype)
endif

 If last pass:

Deallocate arrays

Note: lobserver = if true, calculate

observation departure

vectors only.

subroutine glbsoi (glbsoi.f90)

driver for GSI

 Initialize timer for this procedure

 If l_hyb_ens is true, then initialize

machinery for hybrid ensemble 3dvar

 Check for alternative minimizations

 Initialize observer

 Check GSI options against available

number of guess time levels

 Read observations and scatter

 Create/setup background error and

background error balance

 If l_hyb_ens is true, then read in

ensemble perturbations

 If 4d-var and not 1
st
 outer loop, then

read output from previous

minimization.

 Set error (variance) for predictors

(only use guess)

 Set errors and create variables for

dynamical constraint

 Main outer analysis loop

do jiter=jiterstart,jiterlast

 Set up right hand side of analysis equation

call setuprhsall (details in section 6.2.4)

 Set up right hand side of adjoint of analysis

equation if forecast sensitivity to observations

 Inner minimization loop
if (laltmin) then

if (lsqrtb) call sqrtmin

if (lbicg) call bicg
else

call pcinfo

call pcgsoi (details in section 6.2.5)
endif

 Save information for next minimization

 Save output of adjoint of analysis equation
end do ! jiter

 Calculate and write O-A information

 Deallocate arrays

 Write updated bias correction

coefficients

 Finalize observer

 Finalize timer for this procedure

GSI Code Structure

 22

5.2 GSI background IO (for 3DVAR)

 Read background

Background files Convert to internal format Read in and distribution

NMM NetCDF

NMM binary

ARW NetCDF

ARW binary

RTMA(twodvar)

nems_nmmb

CMAQ

global GFS

 (regional_io.f90)

convert_regional_guess

convert_netcdf_nmm

convert_binary_nmm

convert_netcdf_mass

convert_binary_mass

convert_binary_2d

convert_nems_nmmb

read_guess (read_guess.F90)

read_wrf_nmm_netcdf_guess

read_wrf_nmm_binary_guess

read_wrf_mass_netcdf_guess

read_wrf_mass_binary_guess

read_2d_guess

read_nems_nmmb_guess

read_cmaq_guess

read_bias (bias correction fields)

if (use_gfs_nemsio) then
read_nems

read_nems_chem

else
read_gfs

read_gfs_chem

 Output analysis result

write_all (write_all.F90)

write_regional_analysis

if (use_gfs_nemsio)
write_nems

else
write_gfs

write_bias (bias correction)

 (regional_io.f90)

write_regional_analysis

wrwrfnmma_netcdf

update_netcdf_nmm

wrwrfnmma_binary

wrwrfmassa_netcdf

update_netcdf_mass

wrwrfmassa_binary

wr2d_binary

wrnemsnmma_binary

write_cmaq

Analysis results file

NMM NetCDF

NMM binary

ARW NetCDF

ARW binary

RTMA(twodvar)

nems_nmmb

CMAQ

global GFS

Note: this chart doesn’t include

ensemble member ingest for hybrid

GSI Code Structure

 23

5.3 Observation ingestion

Data type

(ditype)

Observation type

(obstype)

Subroutine that reads

data

conv

t, q, ps, pw, spd, mta_cld,

gos_ctp, gust, vis

read_prepbufr

uv from satwnd read_satwnd

Not from satwnd read_prepbufr

sst

from mods read_modsbufr

not from mods read_prepbufr

srw read_superwinds

tcp read_tcps

lag read_lag

rw (radar winds Level-2) read_radar

dw (lidar winds) read_lidar

rad_ref read_RadarRef_mosaic

lghtn read_lightning

larccld read_NASA_LaRC

pm2_5 read_anowbufr

pblh read_pblb

rad

(satellite

radiances)

(platform)

not AQUA

amsua

read_bufrtovs

(TOVS 1b data)

amsub

msu

mhs

hirs4,3,2

ssu

(platform)

AQUA

airs

read_airs

(airs data)
amsua

hsb

atms read_atms

iasi read_iasi

cris read_cris

sndr, sndrd1/2/3/4 read_goesndr
(GOES sounder data)

ssmi read_ssmi

amsre_low/mid/hig read_amsre

ssmis,

ssmis_las/uas/img/env

read_ssmis

goes_img read_goesimg

seviri read_seviri

avhrr_navy read_avhrr_navy

avhrr read_avhrr

ozone subuv2, omi, gome,

o3lev, mls

read_ozone

co mopitt read_co

pcp pcp_ssmi, pcp_tmi,

pcp_amsu,pcp_stage3

read_pcp

gps gps_ref, gps_bnd read_gps

aero aod read_aerosol

Note: This table is based on

subroutine read_obs in

read_obs.F90:

 Data type is saved in

array ditype

 Observation type is save

in array obstype. In

namelist, the observation

type is dtype

Then in subroutine obs_para

(obs_para.f90), each

processor reads through all

obs_input.* files, pick

observations within its sub-

domain, and save them into a

file called:

pe*.obs-type_outer-loop,

where * is 4 digital processor

ID.

Each observation type uses one or

more processors to read in the

data and then write the data into a

intermediate file called

obs_input.*, where * is a

processor ID that is used to read

in certain observation type.

GSI Code Structure

 24

5.4 Observation innovation calculation

Data type

(ditype)

Observation type

(obstype)

Subroutine

calculate

innovation

conv

t setupt

uv setupw

q setupq

ps setupps

pw setuppw

spd setupspd

sst setupsst

srw setupsrw

tcp setuptcp

lag setuplag

rw (radar winds Level-2) setuprw

dw (lidar winds) setupdw

pm2_5 setuppm2_5

gust setupgust

vis setupvis

pblh setuppb1h

rad

(satellite

radiances)

(platform)

not AQUA

amsua

setuprad

amsub

msu

mhs

hirs4,3,2

ssu

(platform)

AQUA

airs

amsua

hsb

atms

iasi

cris

sndr, sndrd1, sndrd2

sndrd3, sndrd4

ssmi

amsre_low/mid/hig

 ssmis ssmis_*

goes_img

seviri

avhrr_navy

avhrr

ozone subuv2, omi, gome, setupozlay

o3lev, mls setupozlev

pcp pcp_ssmi, pcp_tmi,

pcp_amsu,pcp_stage3

setuppcp

co mopitt, subuv2 setupco

gps gps_ref setupref

gps_bnd setupbend

Note: this table is based on subroutine

setuprhsall in setuprhsall.f90:

 Data type is saved in array ditype

 Observation type is in array obstype

 The observation departure from the

background of each outer loop is

calculated in subroutine setuprhsall.

 A array (rdiagbuf) that holds

observation innovation for diagnosis is

generated in each setup routine. (Also

see A.2)

 The index of the data array for

temperature in setupt is list below:

index content

1 ier obs error

2 ilon grid relative obs location

(x)

3 ilat grid relative obs location

(y)

4 ipres pressure

5 itob t observation

6 id station id

7 itime observation time in data

array

8 ikxx observation type

9 iqt flag indicating if

moisture obs available

10 iqc quality mark

11 ier2 original-original obs

error ratio

12 iuse use parameter

13 idomsfc dominant surface type

14 iskint surface skin temperature

15 iff10 10 meter wind factor

16 isfcr surface roughness

17 ilone longitude (degrees)

18 ilate latitude (degrees)

19 istnelv station elevation (m)

20 iobshgt observation height (m)

21 izz surface height

22 iprvd observation provider

23 isprvd observation subprovider

24 icat data level category

25 iptrb t perturbation

GSI Code Structure

 25

5.5 Inner iteration

The inner iteration loop of GSI is where the cost function minimization is computed. GSI

provides several minimization options, but here we will focus on the preconditioned

conjugate gradient method. The inner iteration of the GSI variational analysis is performed

in subroutine pcgsoi (pcgsoi.f90). inside the following loop:

 inner_iteration: do iter=0,niter(jiter)

 …

 end do inner_iteration

The main steps inside the loop are listed as a table below with the corresponding code and

the terms of equation in Section 6.1.

Steps in inner

iteration

Code in pcgsoi.f90 Corresponding equations in

Chapter 4 (variables are

defined in Chapter 4)

Gradient of

observation term

call intall ()

Add gradient of

background term

gradx(i)=gradx(i)+yhatsave(i)

 ()

Apply background

error covariance

call bkerror(gradx,grady)

Calculate norm of

gradients

 b=

(

)

(

)

Calculate new

search direction

dirx(i)=-grady(i)+b*dirx(i)

diry(i)=-gradx(i)+b*diry(i)
Dir∙ x

n
 = yJ

n
 + βDir∙ x

n-1

Dir∙ y
n
 = xJ

n
 + βDir∙ y

n-1

Calculate stepsize call stpcalc stp=
∑

∑
 Update solution

inside stpcalc

xhatsave(i)=xhatsave(i)+stp*dirx(i)

yhatsave(i)=yhatsave(i)+stp*diry(i)

x
n

= x
n-1

+ αDir∙x
n

y
n

= y
n-1

+ αDir∙y
n

For detailed steps, advanced developers are suggested to read through the code and send

questions to gsi_help@ucar.edu.

mailto:gsi_help@ucar.edu

Static Background Error Covariance

 26

Chapter 6: Static Background Error Covariance

The background error covariance is most important part of variational analysis method to

determine the impact ratio, distribution, and relations of the analysis increments. In this

Chapter, we will discuss the issues related to static background error covariance used in

the GSI analysis.

6.1 what is background error covariance

Background error covariance plays a very important role in determining the quality of

variational analysis for NWP models. It controls what percentage of the innovation

becomes the analysis increment, how each observation impacts a broad area, and the

balance among different analysis variables.

Since most of the data assimilation background are model forecasts from a prior time step,

the background error covariance matrix (B) can be defined as the error covariance of model

forecasts:

[Forecast (x) – Truth (xtruth)]

Since the actual state of atmosphere (truth) is not known, the forecast errors need to be

estimated. When estimating forecast errors, the most common methods are the “NMC

method” and “ensemble method”. In the “NMC method”, forecast errors are estimated with

the difference of two (typically 12 and 24 hours) forecasts valid for the same time. In the

“ensemble method”, the forecast errors are estimated with ensemble perturbations

(ensemble - ensemble mean).

Because of the size of the model variables, the full size of a B matrix is extremely large. It

is typically on the order of 10
6
x10

6
, which in its present form cannot be stored in any

computer. This problem is simplified by using an ideal set of analysis variables for which

the analysis is performed. These are generally referred to as “analysis control variables”.

The analysis control variables are selected such that the cross-correlations between these

variables are minimum, which means less off-diagonal terms in B. The cross dependency

among these analysis control varaibles is removed. The balance between analysis variables

(such as mass and wind fields) are achived with pre-computed “regression coefficients”.

Further, the forecast errors are modeled as a Gaussian distribution with pre-computed

variances and “lengthscale” parameters for each of the analysis control variables. We will

use the following sub-sections to briefly introduce how GSI processes these pre-computed

background error statistics and applies them in a GSI analysis.

To achieve desired regression coefficients, variance, and lengthscale parameters, offline

computation should be conducted with a sufficiently large data set for a period of time,

typically, more than one month. For this purpose, a separate utility called “gen_be” can be

used. It is released as a stand alone tool for the generation of the background error

covariance matrix based on the forecasts from a user defined forecast system. Details about

Static Background Error Covariance

 27

this utility can be found in the 2012 GSI residential tutorial lecture by Rizvi et al. (the

lecture slides are available on-line at the GSI User’s Page).

6.2 Processing of background error matrix

The GSI package has several files in ~/comGSI_v3.2/fix/ to hold the pre-computed

background error statistics for different GSI applications with different grid configurations.

Since the GSI code has a build-in mechanism to interpolate the input background error

matrix to any desired analysis grid, the following two background error files can be used to

specify the B matrix for any GSI regional application.

 nam_nmmstat_na.gcv : contains the regional background error statistics,

computed using forecasts from the NCEP’s NAM model covering North

America. The values of this B matrix cover the northern hemisphere with 93

latitude lines from -2.5 degree to 89.5 degree with 60 vertical sigma levels from

0.9975289 to 0.01364.

 nam_glb_berror.f77.gcv : contains the global background errors based on the

NCEP’s GFS model, a global forecast model. The values of this B matrix covers

global with 192 latitude lines from -90 degree to 90 degree and with 42 vertical

sigma levels from 0.99597 to 0.013831.

Also included in this release package is the background error matrix for RTMA GSI:

 new_rtma_regional_nmm_berror.f77.gcv

These background error matrix files listed above are Big Endian binary files. In the same

directory, nam_nmmstat_na.gcv_Little_Endian and nam_glb_berror.f77.gcv_Little_Endian

are their Little Endian versions for certain computer platforms that cannot compile GSI

with the Big Endian option. In this release version, GSI can be compiled with the Big

Endian option with PGI and Intel, but not with gfortran compiler.

All the parameters for the global background error statistics are latitude dependent. In the

case of the regional background error statistics, regression coefficients of velocity potential

as well as variances and horizontal lengthscales for all the control variables are latitude

dependent. The remaining parameters such as regression coefficients for unbalanced

“surface pressure”, “temperature” and vertical lengthscales for all the fields do not vary

with latitude.

In the GSI code, the background error statistics are initially read in at their original sigma

levels and interpolated vertically in log (sigma) coordinates on the analysis vertical sigma

levels. In subroutines “prewgt” and “prewgt_reg”, lengthscales (both horizontal and

vertical) and variance information are read in and then vertically interpolated to analysis

grids by calling “berror_read_wgt” and “berror_read_wgt_reg”, while the balance

information is read in and vertically interpolated to analysis grids by calling

“berror_read_bal” and “berror_read_bal_reg”, respectively for global and regional

applications.

Static Background Error Covariance

 28

Table 6.1 shows the list of arrays in which the original background error statistics are read

by the various subroutines discussed above.

Table 6.1 The information on arrays used by GSI background error matrix

Category Array

name

Dimension Content

Balance

(Horizontal

regression

coefficients)

agvi 0:mlat+1,1:nsig,1:nsig Regression coefficients for stream

function and temperature

wgvi 0:mlat+1,1:nsig Regression coefficients for stream

function and surface pressure

bvi 0:mlat+1,1:nsig Regression coefficients for stream

function and velocity potential

Horizontal

and vertical

influence

scale

hwll 0:mlat+1,1:nsig,1:nc3d horizontal lengthscales for stream

function, unbalanced velocity potential,

unbalanced temperature, and relative

humidity

hwllp 0:mlat+1, nc2d horizontal lengthscale for unbalanced

surface pressure

vz 1:nsig, 0:mlat+1, 1:nc3d Vertical lengthscale for stream function,

unbalanced velocity potential, unbalanced

temperature, and relative humidity

variance

corz 1:mlat,1:nsig,1:nc3d Square root of variance for stream

function, unbalanced velocity potential,

unbalanced temperature, and relative

humidity

corp 1:mlat,nc2d Square root of variance for unbalanced

surface pressure

Note: mlat = number of latitude in original background error coefficient domain,

nsig = number of vertical levels in analysis grid

 nc3d = number of 3 dimensional analysis variables

 nc2d = number of 2 dimensional analysis variables

Horizontal interpolation of regression coefficients to the desired grid is done for global and

regional applications respectively in subroutines “prebal” and “prebal_reg”, residing in the

“balmod.f90” module. Horizontally interpolated regression coefficients on the desired grid

are stored in “bvz”, “agvz”,“wgvz” and “bvk”, “agvk”, “wgvk” arrays for global and

regional applications, respectively. These regression coefficients are used in subroutine

balance to build the respective balance part of velocity potential, temperature, and surface

pressure fields.

In subroutines “prewgt_reg” and “prewgt”, horizontal and vertical lengthscales (hwll,

hwllp, vz) and variance (corz, corp) information are horizontally interpolated and adjusted

with the corresponding input tuning parameters (“vs”,”hzscl”, “as3d” and “as2d”) supplied

through gsiparm.anl and anavinfo.txt. Desired information is finally processed and

transformed to new arrays such as “slw”, “sli”, “dssv” and “dssvs”, which are subsequently

used for recursive filter applications both in the horizontal and vertical directions. The

variance array: dssv is an allocated array for 3D variables with dimensions “lat”, “lon”,

“nsig”, “variables”. The dssvs is an allocated array for 2D variables with dimensions

Static Background Error Covariance

 29

“lat”, “lon”, “variables”. For both of these arrays, allocation of variables is decided by the

input parameters supplied via “anavinfo” and from the background grid configuration.

6.3 Apply background error covariance

According to the variational equations used in the GSI, the background error covariance is

used to calculate the gradient of the cost function with respect to y based on the gradient of

the cost function with respect to x, which can be represented below following Section

6.1.2:

 JBJ
xy

 (subroutine bkerror(gradx,grady))

Because B is very complex and has a very large dimension in most data analysis domains,

in reality, it must be decomposed into several sub-matrices to fulfill its function step by

step. In GSI, the B matrix is decomposed into the following form:

 B = B balanceVB Z (B x B y B y B x) B Z V B
T

balance

The function of each sub-matrix is explained in table 6.2:

Table 6.2 the function of sub-B matrix
Sub-matrix of B Function Subroutine GSI files

balance
B balance among different variables balance balmod.f90

T

balance
B adjoint of balance equation tbalance balmod.f90

V Square root of variance bkgvar bkgvar.f90

Z
B vertical smoother frfhvo smoothzrf.f90

xyyx
BBBB Self-adjoint smoothers in West-East

(Bx) and South-North (By) direction

smoothrf smoothzrf.f90

The composition of B is achieved by calling bkerror in following three steps:

Step 1. Adjoint of balance equation (
T

balance
B) is done by calling tbalance

Step 2. Apply square root of variances, vertical and horizontal parts of background error

correlation by calling subroutine bkgcov

 Multiply by square root of background error variances (V) by calling bkgvar;

 Apply vertical smoother (
Z

B) by calling frfhvo;

 Convert from subdomain to the full horizontal field distributed among

processors by calling general_sub2grid;

Static Background Error Covariance

 30

 Apply self-adjoint smoothers in West-East (Bx) and South-North (By) direction

by calling smoothrf. Smoothing in the horizontal is achieved by calling ryxyyx

at each vertical sigma level in a loop over number of vertical sigma levels

(nlevs). Smoothing for three horizontal scales is done with the corresponding

weighting factors (hswgt) and horizontal lengthscale tuning factors (hzscl);

 The horizontal field is transformed back to respective subdomains by calling

general_grid2sub;

 Apply vertical smoother (
Z

B) by calling frfhvo;

 Multiply by the square root of background error variances (V) by calling

bkgvar.

Step 3. Application of balance equation (
balance

B) is done by calling balance

In this step the balance part of velocity potential, temperature and surface pressure is

computed from the stream function filled by using the corresponding regression

coefficients as follows:

velocity potential = unbalanced velocity potential +
()Ba lance st vp

B


 stream function

temperature = unbalanced temperature +
()B a la n ce s t t

B


 stream function

surface pressure = unbalanced surface pressure +
()B a la n ce s t p

B


 stream function

Observations

 31

Chapter 7 Observations

The observation types that can be used by GSI and how to add or remove cerain

observation have been discussed in detail in the GSI User’s Guide. But there are more

isssues related to observations that users should know when they apply their own data with

GSI or want o improve the use of data. As an operation system, GSI development team has

invested significant effort to improve the data process inside and outside GSI.

In this chapter, we will discuss several important observation issues for better application

fo the GSI, including:

 Process BUFR/PrepBUFR files

 Understand GSI interface to the observations

 The basic knowledge on NCEP observation files

 Observation error inflation inside the GSI

The first three topics are tailtored from the “BUFR/PrepBUFR User’s Guide” to help users

process observations for GSI more quickly. If users have problem to undertand the

BUFR/PrepBUFR process or want to learn more details of the DC BUFR table and more

exmaples on PrepBUFR process, please check BUFR User’s Page and the BUFR User’s

Guide:

http://www.dtcenter.org/com-GSI/BUFR/index.php

7.1 Process BUFR/PrepBUFR Files

7.1.1 introduction

BUFR (Binary Universal Form for the Representation of meteorological data) is Table

Driven Data Representation Forms approved by the World Meteorological Organization

(WMO) for operational use since 1988. Since then, it has been used for the representation

and exchange of observational data, as well as for archiving of all types of observational

data in operation centers, including National Center for Environmental Prediction (NCEP).

BUFR is a self-descriptive table driven code form that offers great advantages of flexibility

and expandability compared with the traditional alphanumeric code form as well as

packing to reduce message sizes.

As one of the operation centers, NCEP converts and archives all observational data

received into a BUFR tank and provides several kinds of BUFR files for its global and

regional numerical weather forecast systems. These BUFR files are used by the NCEP

operational data analysis system, Gridpoint Statistical Interpolation (GSI), as the standard

data sources. Therefore, it is one of DTC’s GSI user support tasks to provide suitable

http://www.dtcenter.org/com-GSI/BUFR/index.php

Observations

 32

documentation for community GSI users to acquire basic knowledge and skills to use

BUFR form.

In this Section, a set of simple example programs is employed to explain how to process

BUFR/PrepBUFR files. The PrepBUFR is the NCEP term for “prepared” or QC’d data in

BUFR format (NCEP convention/standard). These examples are Fortran codes and are

available in the community GSI release version 3 and later package under directory

./util/bufr_tools/. Through these examples, users can easily understand the usage of several

commonly used BUFRLIB subroutines, and how these subroutines, together with DX

BUFR table, are worked together to encode, decode, append BUFR/PrepBUFR files. These

examples can also serve as a starting point for users to solve their specific BUFR file

processing problems.

The examples studied in this section include:

bufr_encode_sample.f90: Write one temperature observation with location and time

into a BUFR file.

bufr_decode_sample.f90: Read one temperature observation with location and time

out from the BUFR file.
bufr_append_sample.f90: Append one temperature observation with location and

time into an existing BUFR file.

Please note that these examples are based on the NCEP BUFRLIB. We will use examples

to introduce commonly used BUFRLIB subroutines and functions and the code structure of

BUFR processing.

BUFR/PrepBUFR file structure

BUFR file structure should be described as: “A BUFR message contains one or more
BUFR data subsets. Each data subset contains the data for a single report from a
particular observing site at a particular time and location, in addition to time and
location information. Typically each data subset contains data values such as
pressure, temperature, wind direction and speed, humidity, etc. for that particular
observation. Finally, BUFR messages themselves are typically stored in files
containing many other BUFR messages of similar content.” Therefore, if we
summarize in a top-down fashion, we would say:

“A BUFR file contains one or more BUFR messages,
each message containing one or more BUFR data subsets,
each subset containing one or more BUFR data values. “

We can also represent the BUFR/PrepBUFR file structure using the following figure.

Observations

 33

7.1.2 Encode, Decode, Append a simple BUFR file

7.1.2.1 Decoding/reading data from a simple BUFR file

The following is from the code bufr_decode_sample.f90, which shows how to read specific

observation values (among a large variety) out from a BUFR file.

program bufr_decode_sample

!

! example of reading observations from bufr

!

 implicit none

 character(80):: hdstr='XOB YOB DHR'

 character(80):: obstr='TOB'

 real(8) :: hdr(3),obs(1,10)

 integer :: ireadmg,ireadsb

 character(8) subset

 integer :: unit_in=10

 integer :: idate,iret,num_message,num_subset

! decode

 open(unit_in,file='sample.bufr',action='read',form='unformatted')

 call openbf(unit_in,'IN',unit_in)

 call datelen(10)

 num_message=0

 msg_report: do while (ireadmg(unit_in,subset,idate) == 0)

 num_message=num_message+1

 num_subset = 0

 write(*,'(I10,I4,a10)') idate,num_message,subset

 sb_report: do while (ireadsb(unit_in) == 0)

 num_subset = num_subset+1

 call ufbint(unit_in,hdr,3,1 ,iret,hdstr)

 call ufbint(unit_in,obs,1,10,iret,obstr)

 write(*,'(2I5,4f8.1)') num_subset,iret,hdr,obs(1,1)

Observations

 34

 enddo sb_report

 enddo msg_report

 call closbf(unit_in)

end program

Specifically, this example will read all temperature observation values with observation

location and time from a BUFR file named sample.bufr.

The structure of the above FORTRAN BUFR decoding code matches the top-down

hierarchy of a BUFR file. To better illustrate this structure, the code is divided into four

different levels:

open(unit_in,file='sample.bufr',action='read',form='unformatted')

call openbf(unit_in,'IN',unit_in)

 msg_report: do while (ireadmg(unit_in,subset,idate) == 0)

 sb_report: do while (ireadsb(unit_in) == 0)

 call ufbint(unit_in,hdr,3,1 ,iret,hdstr)

 call ufbint(unit_in,obs,1,10,iret,obstr)

 enddo sb_report

 enddo msg_report

call closbf(unit_in)

● The 1
st
 Level: the three RED lines are the first level (file level) statements, which

open/close a BUFR file for decoding.

● The 2
nd

 Level: the two BLUE lines are the second level (message level)

statements, which read in BUFR messages from the BUFR file. Each loop reads

in one message until the last message in the file is reached.

● The 3
rd

 Level: the two GREEN lines are the third level (subset level) statements,

which read in BUFR data subsets from a BUFR message. Each loop reads in

one subset until the last subset in the message is reached.

● The 4
th

 Level: The BLACK lines are the fourth level (data level) statements,

which read in user picked data values into user defined arrays from each BUFR

subset.

All BUFR encode, decode, and append programs have the same structure as listed here.

The message loop (msg_report) and subset loop (sb_report) are needed only if there

are multiple messages in a file and multiple subsets in a message, which is the case for

most types of observations.

1 2 3 4

Observations

 35

There are several commonly used BUFRLIB subroutines/functions in the code. We will

explain the usage of each of them in detail based on the NCO BUFRLIB document. Users

are encouraged to read the explanations carefully in parallel to the example code to

understand the usage of each function. Understanding the usage of these functions and

BUFR file structure are key to successfully processing all NCEP BUFR files.

1
st
 level (file level): open a BUFR file

 open(unit_in,file='sample.bufr',action='read',form='unformatted')

 call openbf(unit_in,'IN',unit_in)

 …

 call closbf(unit_in)

 The open command: Fortran command to link a BUFR file with a logical unit.

Here the action is ‘read’ because we want to decode (read) only. The form is

always “unformatted” because the BUFR file is a binary stream.

 openbf:

CALL OPENBF (LUBFR, CIO, LUNDX)

Input arguments:

 LUBFR INTEGER Logical unit for BUFR file

 CIO CHAR*(*) 'IN' or 'OUT' or 'APX' (or NUL', 'NODX',

 'SEC3' or 'QUIET')

 LUNDX INTEGER Logical unit for BUFR tables

This subroutine identifies to the BUFRLIB software a BUFR file that is connected

to logical unit LUBFR. The argument CIO is a character string describing how the

file will be used, e.g. 'IN' is used to access an existing file of BUFR messages for

reading/decoding BUFR, and 'OUT' is used to access a new file for

writing/encoding BUFR. An option 'APX' behaves like 'OUT', except that output is

then appended to an existing BUFR file rather than creating a new one from

scratch, and there are also some additional options 'NUL', 'NODX', 'SEC3',

'QUIET'. It will be sufficient to further consider only the 'IN', 'OUT', 'APX' cases

for the purposes of this discussion. The third argument LUNDX identifies the

logical unit of DX BUFR table. Except when CIO='SEC3', every BUFR file that is

presented to the BUFRLIB software must have a DX BUFR tables file associated

with it, and these tables may be defined within a separate ASCII text file or, in the

case of an existing BUFR file, may be embedded within the first few BUFR

messages of the file itself, and in which case the user needs to set LUNDX to the

same value as LUBFR. In any case, note that LUBFR and LUNDX are logical unit

numbers; therefore, the user must have already associated these logical unit

numbers with actual filenames on the local system, typically via a FORTRAN

"OPEN" statement.

Observations

 36

Currently, as many as 32 BUFR files can be simultaneously connected to the

BUFRLIB software for processing. Of course, each one must have a unique LUBFR

number and be defined to the software via a separate call to subroutine OPENBF.

In this example, LUBFR=LUNDX= unit_in since BUFR table is already embedded

within the BUFR messages of the file itself. CIO uses ‘IN’ for reading BUFR file.

● closbf:

Since OPENBF is used to initiate access to a BUFR file, CLOSBF would be used to

terminate this access:

 CALL CLOSBF (LUBFR)

 Input argument:

 LUBFR INTEGER Logical unit for BUFR file

This subroutine severs the connection between logical unit LUBFR and the

BUFRLIB software. It is always good to call CLOSBF for every LUBFR that was

identified via OPENBF; CLOSBF will actually execute a FORTRAN "CLOSE" on

logical unit LUBFR before returning, whereas OPENBF did not itself handle the

FORTRAN "OPEN" of the same LUBFR.

Now that we have covered the library subroutines that operate on the BUFR file level, and

recalling the BUFR file structure that was previously discussed, it is now time to continue

on to the BUFR message level:

2
nd

 level (message level): read in messages

 msg_report: do while (ireadmg(unit_in,subset,idate) == 0)

 …

 enddo msg_report

● Function ireadmg:

IRET = IREADMG (LUBFR, CSUBSET, IDATE)

 Input argument:

 LUBFR INTEGER Logical unit for BUFR file

 Output arguments:

 CSUBSET CHAR*(*) Table A mnemonic (name/type) for BUFR message

 IDATE INTEGER Section 1 date-time for BUFR message

 IRET INTEGER Return code:

 0 = normal return

 -1 = no more BUFR messages in LUBFR

Subroutine IREADMG reads the next BUFR message from the given BUFR file

pointed to by LUBFR, returns IRET as its function value. It reads the next BUFR

message into internal arrays within the BUFRLIB software (from where it can be

easily manipulated or further parsed) rather than passed back to the application

program directly. If the return code IRET contains the value -1, then there are no

Observations

 37

more BUFR messages within the given BUFR file, and the file will be automatically

disconnected from the BUFRLIB software via an internal call to subroutine CLOSBF.

Otherwise, if IRET returns with the value 0, then the character argument CSUBSET

will contain the Table A mnemonic which describes a type of data subset, and the

integer argument IDATE will contain the date-time in format of YYMMDDHH or

YYYYMMDDHH determined by subroutine DATELEN.

In this example, the loop meg_report will use ireadmg function to read all message

in from the BUFR file until getting a none-zero return value (IRET=-1).

After IREADMG reads a BUFR message into the internal arrays, we can get into the 3
rd

level of the code to read a data subset from that internal message:

3
rd

 level (subset level): read in data subsets

 sb_report: do while (ireadsb(unit_in) == 0)

 …

 enddo sb_report

● Function ireadsb:

IRET = IREADSB (LUBFR)

Input argument:

 LUBFR INTEGER Logical unit for BUFR file

Output arguments:

 IRET INTEGER Return code:

 0 = normal return

 -1 = no more BUFR data subsets in

 current BUFR message

Function IREADSB reads a data subset from the internal arrays. A return code value

of -1 within IRET indicates that there are no more data subsets within the given

BUFR message.

Again, in this example, the loop sb_report will use ireadsb function to read all

subset in from the internal array until getting a none-zero return value (IRET=-1).

Once a subset has been successfully read with IRET=0, then we are ready to call the data-

level subroutines in order to retrieve actual data values from this subset:

4
th

 level (data level): read in picked data values

This is the level where observation values are read into user-defined arrays. To understand

how to read in observations from a BUFR subset, the following two questions need to be

addressed:

1) How do I know what kind of data are included in the subset (or a BUFR file)?

This question can be answered by checking the content of a BUFR table and mnemonics.

The BUFR table and mnemonics is discussed in detail by Chapter 3 of the BUFR User’s

Observations

 38

Guide. Here we illustrate how to use the BUFR table to solve the problem directly. As an

example, an excerpt from the BUFR table in sample.bufr for the message type ADPUPA is

shown below. We will use this table information to illustrate how to track observation

variables in ADPUPA (the upper level data type):

|--|

| MNEMONIC | NUMBER | DESCRIPTION |

|----------|--------|--|

| ADPUPA | A48102 | UPPER-AIR (RAOB, PIBAL, RECCO, DROPS) REPORTS |

| AIRCAR | A48103 | MDCRS ACARS AIRCRAFT REPORTS |

| MNEMONIC | SEQUENCE |

|----------|---|

| ADPUPA | HEADR SIRC {PRSLEVEL} <SST_INFO> <PREWXSEQ> {CLOUDSEQ} |

| ADPUPA | <CLOU2SEQ> <SWINDSEQ> <AFIC_SEQ> <TURB3SEQ> |

| HEADR | SID XOB YOB DHR ELV TYP T29 TSB ITP SQN PROCN RPT |

| HEADR | TCOR <RSRD_SEQ> |

|--|

| MNEMONIC | NUMBER | DESCRIPTION |

|----------|--------|--|

| SID | 001194 | STATION IDENTIFICATI

| XOB | 006240 | LONGITUDE |

| YOB | 005002 | LATITUDE |

| DHR | 004215 | OBSERVATION TIME MINUS CYCLE TI |

| ELV | 010199 | STATION ELEVATION |

| TYP | 055007 | PREPBUFR REPORT TYP |

|--|

| MNEMONIC | SCAL | REFERENCE | BIT | UNITS |-------------|

|----------|------|-------------|-----|----------------------|-------------|

| | | | | |-------------|

| SID | 0 | 0 | 64 | CCITT IA5 |-------------|

| XOB | 2 | -18000 | 16 | DEG E |-------------|

| YOB | 2 | -9000 | 15 | DEG N |-------------|

| DHR | 3 | -24000 | 16 | HOURS |-------------|

| ELV | 0 | -1000 | 17 | METER |-------------|

| TYP | 0 | 0 | 9 | CODE TABL |-------------|

The four color boxes here are used to separate the different parts of the BUFR table, which

can also be marked as Part 1 (red), Part 2 (blue), Part 3 (yellow), and Part 4 (green) in the

order they are listed above.

As discussed before, IREADMG reads in a message with three output arguments. The first

output argument is:

CSUBSET Table A mnemonic for BUFR message

It returns the message type (also called data type). This message type is the starting point to

learn what types of observations are included in this message. The description of message

types can be found in the first section of a BUFR table, that is the Part 1 (red) in the sample

BUFR table.

Observations

 39

Here, if CSUBSET has the value of ADPUPA, the contents of this message or all subsets (third

level) are upper air reports (like rawinsonde). A search of ADPUPA in the BUFR table returns

the first two lines of Part 2 (blue), in which ADPUPA is followed by a sequence of items like:

HEADR SIRC {PRSLEVEL}…. If we then search for HEADR in the same file, we can find the

last two lines in Part 2 (blue), in which HEADR leads the sequence containing SID XOB YOB

DHR ELV TYP … .

If we then search for SID XOB YOB DHR ELV TYP in the same file, we can find the

definition of these items in Part 3 (yellow). Clearly, the message type ADPUPA includes

variables like station ID, observation location (longitude, latitude), observation time, etc.

These are important variables to describe an observation. If we keep searching for other

items under ADPUPA, we can also find lots of observation variables are included in ADPUPA.

Please note that a complete list of all variables in a message type could be very long and

complex, but we don’t need to learn about all of them - we only need to know what we

need for our specific application.

The last part of the BUFR table (Part 4, green) includes useful unit information for a

variable; for example, the unit of XOB is DEG (degree) and the unit of DHR is HOURS (hours).

Users will not likely need to make use of the scale, reference, and bit information.

There are lots of other details on BUFR tables, but the above information should be

sufficient for now to learn about BUFR file processing applications using the NCEP

BUFRLIB software with the examples in this Chapter.

2). How do I tell BUFRLIB to only read in specific data information?

From the BUFR table discussion above, we can see a message or a subset could include

lots of information. In this example, we only wants to read in temperature observation,

along with its longitude, latitude, and observation time. Here we will use this example to

illustrate how to solve this question. From the BUFR table, for the message type ADPUPA,

the name of longitude, latitude, and time in the BUFR table are 'XOB YOB DHR' within the

sequence HEADER. Similarly, the name of the temperature observation can be found as

'TOB' in the sequence {PRSLEVEL} (not shown in the example BUFR table). Actually, most

conventional message types contain such observation information.

In the example code, the first several lines define the information we want to read:

 character(80):: hdstr='XOB YOB DHR'

 character(80):: obstr='TOB'

 real(8) :: hdr(3),obs(1,10)

hdstr is a string of blank-separated names (mnemonics) associated with array hdr, while

obstr is another string associated with array obs. Please note that arrays (hdr and obs)

have to be defined as REAL*8 arrays. Now let’s first learn the usage of subroutine ufbint

which is called in the following two lines.

Observations

 40

call ufbint(unit_in,hdr,3,1 ,iret,hdstr)

call ufbint(unit_in,obs,1,10,iret,obstr)

● ufbint
CALL UFBINT (LUBFR, R8ARR, MXMN, MXLV, NLV, CMNSTR)

Input arguments:

 LUBFR INTEGER Logical unit for BUFR file

 CMNSTR CHAR*(*) String of blank-separated mnemonics

 associated with R8ARR

 MXMN INTEGER Size of first dimension of R8ARR

 MXLV INTEGER Size of second dimension of R8ARR

 OR number of levels of data values

 to be written to data subset

Input or output argument (depending on context of LUBFR):

 R8ARR(*,*) REAL*8 Data values written/read to/from

 data subset

Output argument:

 NLV INTEGER Number of levels of data values

 written/read to/from data subset

Subroutine UFBINT writes or reads specified values to or from the current BUFR

data subset within the internal arrays, with the direction of the data transfer being

determined by the context of LUBFR, if LUBFR points to a BUFR file that is open

for input (i.e. reading/decoding BUFR), then data values are read from the internal

data subset; otherwise, data values are written to the internal data subset. The actual

data transfer occurs through the use of the two-dimensional REAL*8 array R8ARR

whose actual first dimension MXMN must always be passed in. The call argument

MXLV, on the other hand, contains the actual second dimension of R8ARR only

when LUBFR points to a BUFR file that is open for input (i.e. reading/decoding

BUFR); otherwise, whenever LUBFR points to a BUFR file that is open for output

(i.e. writing/encoding BUFR), MXLV instead contains the actual number of levels

of data values that are to be written to the data subset (and where this number must

be less than or equal to the actual second dimension of R8ARR). In either case, the

input character string CMNSTR always contains a blank-separated list of

"mnemonics" which correspond to the REAL*8 values contained within the first

dimension of R8ARR, and the output argument NLV always denotes the actual

number of levels of those values that were written/read to/from the second

dimension of R8ARR, where each such level represents a repetition of the

mnemonics within CMNSTR. Note that, when LUBFR points to a BUFR file that is

open for output (i.e. writing/encoding BUFR), we would certainly expect that the

output value NLV is equal to the value of MXLV that was input, and indeed this is

the case unless some type of error occurred in storing one or more of the data

levels.

Observations

 41

In this case, after we run the two BUFRLIB subroutines, longitude (XOB), latitude (YOB), and

observation time (DHR) will be read into array hdr and temperature observations (TOB) is

read into array obs. The array contents should be:

● hdr(1) - longitude

● hdr(2) - latitude

● hdr(3) - time

● obs(1,1) - temperature observation in 1st level (single level)

● obs(1,2) - temperature observation in 2nd level for multi-level observation

● obs(1,3) - temperature observation in 3rd level for multi-level observation

● ...

Because these two lines are inside the message and subset loops, we can get temperature

observation with location and time from all observations in the BUFR file. If data subsets

contain some missing data, the data values in the array are assigned as 10.0E10.

Now, only one BUFRLIB subroutine datelen left in the code needs to be explained:

● datelen:

 CALL DATELEN (LEN)

 Input argument:

 LEN INTEGER Length of Section 1 date-time values to

 be output by message-reading subroutines

 such as READMG, READERME, etc.

 8 = YYMMDDHH (i.e. 2-digit year)

 10 = YYYYMMDDHH (i.e. 4-digit year)

This subroutine allows the user to specify the format for the IDATE output argument that is

returned by READMG.

7.1.2.2 Encoding/writing data into a simple BUFR file

The following is from the program bufr_encode_sample.f90, which shows how to write a

few observation variables into a new BUFR file.

program bufr_encode_sample

!

! example of writing one value into a bufr file

!

 implicit none

 character(80):: hdstr='XOB YOB DHR'

 character(80):: obstr='TOB'

 real(8) :: hdr(3),obs(1,1)

Observations

 42

 character(8) subset

 integer :: unit_out=10,unit_table=20

 integer :: idate,iret

! set data values

 hdr(1)=75.;hdr(2)=30.;hdr(3)=-0.1

 obs(1,1)=287.15

 idate=2008120100 ! YYYYMMDDHH

 subset='ADPUPA' ! upper-air reports

! encode

 open(unit_table,file='table_prepbufr.txt')

 open(unit_out,file='sample.bufr',action='write' &

 ,form='unformatted')

 call datelen(10)

 call openbf(unit_out,'OUT',unit_table)

 call openmb(unit_out,subset,idate)

 call ufbint(unit_out,hdr,3,1,iret,hdstr)

 call ufbint(unit_out,obs,1,1,iret,obstr)

 call writsb(unit_out)

 call closmg(unit_out)

 call closbf(unit_out)

end program

Specifically, this example will write one temperature observation value with observation

location and time to a BUFR file named as sample.bufr.

Here, we can see the BUFR encode procedure has the same structure as the decode

procedure: file level, message level, subset level, which are marked in the same color as the

decode example in Section 7.1.2.1. The major difference between encode and decode are

highlighted in bold in the code and explained below:

● open(unit_table,file='table_prepbufr.txt')

To encode some observation values into a new BUFR file, a pre-existing BUFR

table file is necessary and needs to be opened.

● open(unit_out,file='sample.bufr',action='write',form='unformatted')

The action in Fortran open command has to be “write”.

● call openbf(unit_out,'OUT',unit_table)

The second input parameter is set to “OUT” to access a new file for writing. The

third parameter is the logical unit of BUFR table file so that BUFR table will be

written into BUFR file. Please check the detailed explanation for openbf in section

7.1.2.1.

● call openmb(unit_out,subset,idate)

CALL OPENMB (LUBFR, CSUBSET, IDATE)

Observations

 43

Input arguments:

 LUBFR INTEGER Logical unit for BUFR file

 CSUBSET CHAR*(*) Table A mnemonic for type of BUFR

 message to be opened

 IDATE INTEGER Date-time to be stored within

 Section 1 of BUFR message

This function opens and initializes a new BUFR message for eventual output to

LUBFR, using the arguments CSUBSET and IDATE to indicate the type and time of

message to be encoded. It only opens a new message if either CSUBSET or IDATE

has changed, and otherwise will simply return while leaving the existing internal

message unchanged, so that subsequent data subsets can be stored within the same

internal message. For this reason, OPENMB allows for the storage of an increased

number of data subsets within each BUFR message and therefore improves overall

encoding efficiency. Regardless, whenever a new BUFR message is opened and

initialized, the existing internal BUFR message (if any) will be automatically closed

and written to output via an internal call to the following subroutine:

● call closmg(unit_out)

CALL CLOSEMG (LUBFR)

Input arguments:

 LUBFR INTEGER Logical unit for BUFR file

Furthermore, since, in the case of a BUFR file that was opened for input, each

subsequent call to subroutine IREADMG will likewise automatically clear an

existing message from the internal arrays before reading in the new one, for this

reason, it is rare to ever see subroutine CLOSMG called directly from within an

application program!

● call writsb(unit_out)

CALL WRITSB (LUBFR)

Input argument:

 LUBFR INTEGER Logical unit for BUFR file

This subroutine is called to indicate to the BUFRLIB software that all necessary
data values for this subset have been stored and thus that the subset is ready
to be encoded and packed into the current message for the BUFR file
associated with logical unit LUBFR. However, we should note that the BUFRLIB
software will not allow any single BUFR message to grow larger than a certain
size (usually 10000 bytes, although this can be increased via a call to
subroutine MAXOUT);

Before this subroutine, we can see two consecutive calls to the subroutine ufbint,

which is the same as in the decode example. However, this time, the strings hdstr

tells the BUFR subroutine ufbint that the array hdr holds longitude, latitude and

observation time, the string obstr tells ufbint that the array obs holds

Observations

 44

temperature observations. The data subset is ready and written into the BUFR file

via call writsb.

7.1.2.3 Appending data to a simple BUFR file

The following is from the program bufr_append_sample.f90, which shows how to append a

new observation variable into an existing BUFR file.

program

! sample of appending one observation into bufr file

 implicit none

 character(80):: hdstr='XOB YOB DHR'

 character(80):: obstr='TOB'

 real(8) :: hdr(3),obs(1,1)

 character(8) subset

 integer :: unit_out=10,unit_table=20

 integer :: idate,iret

! set data values

 hdr(1)=85.0;hdr(2)=50.0;hdr(3)=0.2

 obs(1,1)=300.0

 idate=2008120101 ! YYYYMMDDHH

 subset='ADPSFC' ! surface land reports

! get bufr table from existing bufr file

 open(unit_table,file='table_prepbufr_app.txt')

 open(unit_out,file='sample.bufr',status='old',form='unformatted')

 call openbf(unit_out,'IN',unit_out)

 call dxdump(unit_out,unit_table)

 call closbf(unit_out)

! append

 open(unit_out,file='sample.bufr',status='old',form='unformatted')

 call datelen(10)

 call openbf(unit_out,'APN',unit_table)

 call openmb(unit_out,subset,idate)

 call ufbint(unit_out,hdr,3,1,iret,hdstr)

 call ufbint(unit_out,obs,1,1,iret,obstr)

 call writsb(unit_out)

 call closmg(unit_out)

 call closbf(unit_out)

end program

Specifically, this example will append one temperature observation value with observation

location and time to an existing BUFR file named as sample.bufr.

Observations

 45

If we compare this code with the example code for encoding, we can find the code

structure and BUFRLIB functions used are very similar in two codes. But there is a key

point that needs special attention for appending:

● Appending has to use the exact same BUFR table as the existing BUFR file.

To ensure this, we add the following three lines to the code in order to extract the

BUFR table from the existing BUFR file:

 call openbf(unit_out,'IN',unit_out)

 call dxdump(unit_out,unit_table)

 call closbf(unit_out)

 Let’s learn subroutine dxdump.

 CALL DXDUMP (LUBFR, LDXOT)

 Input arguments:

 LUBFR INTEGER Logical unit for BUFR file

 LDXOT INTEGER Logical unit for output BUFR tables file

This subroutine provides a handy way to view the BUFR table information that
is embedded in the first few messages of a BUFR file. The user needs only to
have identified the file to the BUFRLIB software via a prior call to subroutine
OPENBF, and then a subsequent call to subroutine DXDUMP will unpack the
embedded tables information and write it out to the file pointed to by logical
unit LDXOT. The output file is written with ASCII-text table format. Subroutine
DXDUMP can be most useful for learning the contents of archive BUFR files.

In this example, the BUFR table embedded in the BUFR file sample.bufr will be read

in and written into a text file called table_prepbufr_app.txt.

Comparing with the encode example again, there are two more slight differences in setups,

which are highlighted in the code as Bold and explained below:

● In the Fortran open command, the status has to be set as ‘old’ because appending

requires an existing BUFR file.

● In the subroutine openbf, the existing BUFR file and dumped BUFR table are

connected to BUFRLIB, the second input parameter has to be set as ‘APN’.

Observations

 46

7.1.3 Encode, Decode, Append the PrepBUFR file

In last section, we use three simplified examples to illustrate the code structure of the

BUFR file process (read, write and append) and explained commonly used BUFRLIB

functions in the example code. In this section, we will learn how to use the skills we

learned in previous sections to process a PrepBUFR file, which is one of major BUFR files

used in GSI for all conventional observations and retrieved standard observations.

7.1.3.1 Decoding/reading data from a PrepBUFR file

The following is from the code prepbufr_decode_all.f90, which reads all major

conventional observations and BUFR table out from a PrepBUFR file.

program prepbufr_decode_all

!

! read all observations out from prepbufr.

! read bufr table from prepbufr file

!

 implicit none

 integer, parameter :: mxmn=35, mxlv=250

 character(80):: hdstr='SID XOB YOB DHR TYP ELV SAID T29'

 character(80):: obstr='POB QOB TOB ZOB UOB VOB PWO CAT PRSS'

 character(80):: qcstr='PQM QQM TQM ZQM WQM NUL PWQ '

 character(80):: oestr='POE QOE TOE NUL WOE NUL PWE '

Compared to the mnemonic list used in the examples in 7.1.2.1, a clear difference here is

that more BUFR table mnemonics are involved because we want to read all major

observations, such as temperature (TOB), moisture (QOB), Pressure(POB), Height (ZOB),

wind (UOB and VOB). Also, we want to read the quality flags and observation errors with

these observations at the same time. Here is a list of content in these mnemonics strings:

 hdstr: defines report header information including the station ID, longitude, latitude,

time, report type, elevation, satellite ID, data dump report type.

 obstr: defines observation for pressure, specific humidity, temperature, height, u

and v component of wind, total precipitable water, data level category, surface

pressure.

 qcstr: defines the quality markers for each of observation variables listed in the

string obstr.

 oestr: defines the observation error for each of observation variables listed in the

string obstr.

More detailed information on these mnemonics can be found from the BUFR table named

with “prepobs_prep.bufrtable”, which is a text file dumped out during the decoding

process.

Observations

 47

real(8) :: hdr(mxmn),obs(mxmn,mxlv),qcf(mxmn,mxlv),oer(mxmn,mxlv)

The associated arrays are defined to hold the data values of mnemonics specified in hdstr,

obstr, qcstr, oestr. Note, mxmn=35, mxlv=250, which make the array can hold up to

250 levels of observations with up to 35 mnemonics in each level.

 INTEGER :: ireadmg,ireadsb

 character(8) :: subset

 integer :: unit_in=10,unit_table=24,idate,nmsg,ntb

 character(8) :: c_sid

 real(8) :: rstation_id

 equivalence(rstation_id,c_sid)

From our earlier discussions, it was noted that data values are normally read from or

written to BUFR subsets using REAL*8 arrays via subroutine. The character values are

read and written in the same way using a REAL*8 variable. Here, rstation_id is real(8);

c_sid is character(8); then FORTRAN EQUIVALENCE is used to covert the station ID

from REAL*8 to string that can be easily read by humans.

 integer :: i,k,iret

open(unit_table,file='prepobs_prep.bufrtable')

Fortran open command to link BUFR table with a logical unit, unit_table.

open(unit_in,file='prepbufr',form='unformatted',status='old')

Fortran open command to link a PrepBUFR file with a logical unit, unit_in.

call openbf(unit_in,'IN',unit_in)

Connect the PrepBUFR file to BUFRLIB. Since BUFR table is embedded in the

PrepBUFR file, the third argument is the same as first argument in this call.

call dxdump(unit_in,unit_table)

Dump BUFR table out from the existing PrepBUFR file and write to a ASCII file named

“prepobs_prep.bufrtable” through unit unit_table.

call datelen(10)

Specifies the date format as YYYYMMDDHH.

nmsg=0

 msg_report: do while (ireadmg(unit_in,subset,idate) == 0)

 nmsg=nmsg+1

 ntb = 0

 write(*,*)

Observations

 48

 write(*,'(3a,i10)') 'subset=',subset,' cycle time =',idate

 sb_report: do while (ireadsb(unit_in) == 0)

The msg_report loop reads each of messages until reaching the end of file. The

sb_report loop reads each of data subsets within the current message until the end of the

message.

 ntb = ntb+1

 call ufbint(unit_in,hdr,mxmn,1 ,iret,hdstr)

 call ufbint(unit_in,obs,mxmn,mxlv,iret,obstr)

 call ufbint(unit_in,oer,mxmn,mxlv,iret,oestr)

 call ufbint(unit_in,qcf,mxmn,mxlv,iret,qcstr)

Calling rhe subroutine ufbint to read data based on mnemonics defined in hdstr, obstr,

oestr, qcstr from a subset and write to corresponding arrays hdr,obs, oer, qcf. The

iret is the actual returned number of pressure levels which have be read in even though

mxlv=250.

 rstation_id=hdr(1)

 write(*,*)

 write(*,'(2I10,a14,8f14.1)') ntb,iret,c_sid,(hdr(i),i=2,8)

 DO k=1,iret

 write(*,'(i3,a10,9f14.1)') k,'obs=',(obs(i,k),i=1,9)

 write(*,'(i3,a10,9f14.1)') k,'oer=',(oer(i,k),i=1,7)

 write(*,'(i3,a10,9f14.1)') k,'qcf=',(qcf(i,k),i=1,7)

 ENDDO

 enddo sb_report

 enddo msg_report

call closbf(unit_in)

end program

From this PrepBUFR decoding example, we can see that the code structure and functions

used are the same as the simple decoding example in section 7.1.2.1. But this example

defines more mnemonics and larger dimensions of the REAL*8 arrays to read all major

observation elements from the PrepBUFR file, including observation values, quality

markers, and observation errors.

7.1.3.2 More exmaples on processing PrepBUFR files

In BUFR/PrepBUFR User’s Guider, there are more exmaples on how to processing the

PrepBUFR files used by GSI. Please read that document if needed:

prepbufr_encode_surface.f90: Write a surface observation into a PrepBUFR file.
prepbufr_encode_upperair.f90: Write an upper air observation into the PrepBUFR file.
prepbufr_append_surface.f90: Append a surface observation into an existing

Observations

 49

PrepBUFR file.
prepbufr_append_upperair.f90: Append an upper air observation into an existing

repBUFR file.
prepbufr_append_retrieve.f90: Append a retrieved data into an existing PrepBUFR file.
bufr_decode_radiance.f90: Read TOVS 1B radiance observations and BUFR table

out from the radiance BUFR file.

7.3 GSI BUFR interface

GSI has a set of code to ingest and process observation data from BUFR/PrepBUFR files

for the analysis. This section will first explain the procedure of observation ingest and

process within the GSI system. Then, we provide 4 examples from GSI observation

ingesting subroutines to illustrate how GSI interfaces with the BUFR files.

7.3. 1 GSI observation data ingest and process procedure

As an important component of any data analysis system, observation data ingesting and

processing is a key part of the GSI system. The data types that can be used in the GSI

analysis and the corresponding subroutines that read in these data types are listed in the

section 5.3 of the Advanced GSI User’s Guide. But there are more details that users should

know to be able to handle the observation data in GSI with confidence and flexibility. This

section introduces the complete structure of GSI observation data ingesting and processing

step-by step, including run scripts and namelist setup, data ingesting driver routine, read

subroutines, observation data partition, and innovation calculation.

 Step 1: Link BUFR/PrepBUFR file to GSI recognized names in GSI run scripts

In the GSI run script, there is a section to link the BUFR/PrepBUFR files to GSI

recognized file names in the GSI run directory. The script looks like:

Link to the prepbufr data

ln -s ${PREPBUFR} ./prepbufr

Link to the radiance data

ln -s ${OBS_ROOT}/gdas1.t12z.1bamua.tm00.bufr_d amsuabufr

ln -s ${OBS_ROOT}/gdas1.t12z.1bhrs4.tm00.bufr_d hirs4bufr

ln -s ${OBS_ROOT}/gdas1.t12z.1bmhs.tm00.bufr_d mhsbufr

Clearly, the PrepBUFR file: gdas1.t12z.prepbufr.nr, which is the file pointed by

${PREPBUFR}, and the BUFR files: gdas1.t12z.1bamua.tm00.bufr_d and

gdas1.t12z.1bhrs4.tm00.bufr_d are the files we downloaded from NCEP data hub. The

names of these files are determined by NCEP based on the operation systems that use the

files. The BUFR files used in GSI can also be the observation files generated by users and

named by users. But GSI itself doesn’t recognize the names of these files. So, in the GSI

run scripts, these files must be linked to the GSI run directory with a name that GSI knows.

Observations

 50

In the section 3.1 of the GSI User’s Guider has a table that lists all the GSI recognized data

file names at the left column, the contents of the data files at the middle column, and the

sample GDAS BUFR/PrepBUFR file names at the left column. The following is a sample

of the table.

GSI Name Content Example file names
prepbufr Conventional observations, including ps, t, q, pw,

uv, spd, dw, sst, from observation platforms such
as METAR, sounding, et al.

gdas1.t12z.prepbufr

amsuabufr AMSU-A 1b radiance (brightness temperatures) from
satellites NOAA-15, 16, 17,18, 19 and METOP-A

gdas1.t12z.1bamua.tm00.bufr_d

amsubbufr AMSU-B 1b radiance (brightness temperatures)
from satellites NOAA15, 16,17

gdas1.t12z.1bamub.tm00.bufr_d

radarbufr Radar radial velocity Level 2.5 data ndas.t12z. radwnd. tm12.bufr_d
gpsrobufr GPS radio occultation observation gdas1.t12z.gpsro.tm00.bufr_d
ssmirrbufr Precipitation rate observations fromSSM/I gdas1.t12z.spssmi.tm00.bufr_d
hirs4bufr HIRS4 1b radiance observation from satellite

NOAA 18, 19 and METOP-A
gdas1.t12z.1bhrs4.tm00.bufr_d

msubufr MSU observation from satgellite NOAA 14 gdas1.t12z.1bmsu.tm00.bufr_d

So, in the GSI run script, the files in the right column are linked to the run directory with a

new name at the left column. As a matter of fact, the file names in the left column can be

changed if users prefer to do so and know how to change them in the GSI namelist data file

setup section. But we recommend to leave the file names as is because the current names in

the left column are a good indication of the contents of the corresponding BUFR

observation files and are used by many the GSI applications.

 Step 2: GSI Namelist data configuration section: &OBS_INPUT

In the GSI namelist, section &OBS_INOUT is used to setup data usage such as the links

between data types and data files, data time window, and satellite data thinning. The

following is a sample of the namelist section &OBS_INOUT:

&OBS_INPUT

 dmesh(1)=120.0,dmesh(2)=60.0,dmesh(3)=60.0,dmesh(4)=60.0,dmesh(5)=120,time_window_max=1.5,

 dfile(01)='prepbufr’, dtype(01)='ps', dplat(01)=' ', dsis(01)='ps', dval(01)=1.0, dthin(01)=0,

 dfile(02)='prepbufr' dtype(02)='t', dplat(02)=' ', dsis(02)='t', dval(02)=1.0, dthin(02)=0,

 dfile(03)='prepbufr', dtype(03)='q', dplat(03)=' ', dsis(03)='q', dval(03)=1.0, dthin(03)=0,

 dfile(04)='prepbufr', dtype(04)='uv', dplat(04)=' ', dsis(04)='uv', dval(04)=1.0, dthin(04)=0,

……

 dfile(27)='msubufr', dtype(27)='msu', dplat(27)='n14', dsis(27)='msu_n14', dval(27)=2.0, dthin(27)=2,

 dfile(28)='amsuabufr', dtype(28)='amsua', dplat(28)='n15', dsis(28)='amsua_n15’, dval(28)=10.0, dthin(28)=2,

 dfile(29)='amsuabufr’, dtype(29)='amsua', dplat(29)='n16', dsis(29)='amsua_n16’, dval(29)=0.0, dthin(29)=2,

Users may notice that the first column, dfile, is the GSI recognized file names listed in the

section 3.1 of the GSI User’s Guider . The 2
nd

 column, dtype, is the observation type. The

3
rd

 column, dplat, is satellite platform ID. And the 4
th

 column, dsis, is the data type from

convinfo file or Sensor/instrument/satellite flag from satinfo file.

In the GSI data ingesting driver, it is the data type, dtype, that is used to decide which

routine to call for reading the data from the corresponding input file defined by dfile. For

example, when the GSI reaches the code to read “t”, it will open file 'prepbufr'

Observations

 51

(dfile(02)) to read temperature in. Or when the GSI reaches the point to read in AMSU-

A from NOAA 16, it will open file 'amsuabufr’ (dfile(29)) to read in the data. From

the namelist setup, it is possible that GSI reads in “t” from one PrepBUFR file

(dfile(02)) but reads in ‘q’ from another PrepBUFR file (dfile(03)), which gives more

flexibility to control the data used in the GSI analysis.

 Step 3: GSI data ingest driver

In GSI, subroutine read_obs (inside file read_obs.F90) is used to read, select, and reformat

observation data. It is the driver for routines that read different types of the observational

data. This routine loops through all data types listed in dtype and checks the data usage and

file availability. If the data file exists and the info files indicate the use of the data type, one

or several processors will be assigned to read the data from the corresponding file setup in

dfile. Please refer to the section 4.3 of the GSI User’s Guide for more information on

using the info file to control data usage. Here we give two chunks of the code from

subroutine read_obs as examples to illustrate how to find routines that read different

observation data types.

Example 1: Process conventional (prepbufr) data

!

 if(ditype(i) == 'conv')then

 if (obstype == 't' .or. obstype == 'uv' .or. &

 obstype == 'q' .or. obstype == 'ps' .or. &

 obstype == 'pw' .or. obstype == 'spd'.or. &

 obstype == 'mta_cld' .or. obstype == 'gos_ctp') then

 call read_prepbufr(nread,npuse,nouse,infile,obstype,lunout,twind,sis,&

 prsl_full)

 string='READ_PREPBUFR'

From this chunk of the code, we can see the subroutine read_prepbufr will be used to read

the data type ‘t’, ‘uv’, ‘q’, ‘ps’, ‘pw’, ‘spd’, ‘mta_cld’, ‘gos_ctp’ from PrepBUFR file saved

in “infile”.

Example 2: Process TOVS 1b data

!

 if (platid /= 'aqua' .and. (obstype == 'amsua' .or. &

 obstype == 'amsub' .or. obstype == 'msu' .or. &

 obstype == 'mhs' .or. obstype == 'hirs4' .or. &

 obstype == 'hirs3' .or. obstype == 'hirs2' .or. &

 obstype == 'ssu')) then

 llb=1

 lll=1

 if((obstype == 'amsua' .or. obstype == 'amsub' .or. obstype == 'mhs') .and. &

 (platid /= 'metop-a' .or. platid /='metop-b' .or. platid /= 'metop-c'))lll=2

 call read_bufrtovs(mype,val_dat,ithin,isfcalc,rmesh,platid,gstime,&

 infile,lunout,obstype,nread,npuse,nouse,twind,sis, &

 mype_root,mype_sub(mm1,i),npe_sub(i),mpi_comm_sub(i),llb,lll)

 string='READ_BUFRTOVS'

Observations

 52

From this chunk of the code, we can see the subroutine read_bufrtovs will be used to read

many kinds of radiance data such as ‘amsua’, ‘amsub’, ‘msu’, ‘mhs’, ‘hirs’, ‘ssu’ from

radiance BUFR file saved in “infile”. But these radiance data are not observed by AQUA.

In the subroutine read_obs, users can find similar portion of the code deciding which

subroutine is used to read in the data for certain data type. For each subroutine, the input

variables always includes parameters like:

infile = dfile of the namelist section &OBS_INOUT

obstype = dtype of the namelist section &OBS_INOUT

sis = dsis of the namelist section &OBS_INOUT

 Step 4: Read in observations and initial check of the observations

The data types and the corresponding GSI subroutines that read in these data types are

listed in the table of section 5.3. From the table, we can see there are 28 subroutines

employed by GSI to read in different kinds of BUFR/PrepBUFR files. Also from the table,

we can easily find the GSI subroutine that actually reads in the certain observations from

the BUFR/PrepBUFR files. The same subroutines also do the quality control to the

observation data, data thinning, and checks to insure that the data are in the analysis

domain and time window.

These read_* subroutines listed in the table of section 5.3 are the GSI interface to the

BUFR/PrepBUFR that users should check when trying to analyze their own data using the

GSI system. We will discuss how to check the structure of these read_* subroutines in

section 7.3.2 of this Chapter.

After we read in the observations for each element, such as “t”, “q”, “wind”, GSI will write

out observations for certain element in the analysis domain and time to one binary file,

which will be read in again by the next step for data partitioning into sub-domains (if run

with multiple processors).

 Step 5: sub-domain partition

When GSI runs in parallel mode, both the background and the observation data need to be

partitioned into sub-domains. This step is done after the observation data have been read in

and saved in the internal format. The code to assign and distribute observations to sub-

domains is call “obs_para”, which is a subroutine inside the file “obs_para.f90”. Please

note that after this step, the observations from all observation elements are saved in the

same binary file for each processor.

 Step 6: innovation calculation

As an important step of the data analysis system, observation innovation calculation also

involves lots of code. The section 5.4 of the Advanced GSI User’s Guide provides a table

to list innovation calculations for the different kinds of observation elements. We will not

Observations

 53

introduce these calculations in this document but would like to remind users that

innovation calculation is also a key component in the use of observation data in the

analysis.

7.3.2 The BUFR decoding in GSI read files

From the previous section, we can see that there are many steps involved in the GSI system

to ingest and process the observation data from BUFR/PrepBUFR files for the final

analysis. To encode new data for the GSI, the best way to start is reading the related GSI

code for BUFR/PrepBUFR data ingesting and checking the mnemonics used in the code to

figure out the data needed in the GSI. In the table of section 5.3, we have provided a

complete list of GSI subroutines for the observation data ingesting. Here we will give 2

examples to illustrate how to extract the GSI BUFR interface from the GSI read_*

subroutines and delete other functions that are not related to the BUFR decoding from the

subroutine, such as observation location and time checking, data thinning, and quality

control checking, etc.

Example 1: read_prebufr.f90

The file read_prepbufr.f90 is in GSI source code directory (./src/main) and it reads

conventional data from the PrepBUFR file. Specific observation types read by this routine

include surface pressure, temperature, winds (components and speeds), moisture, total

precipitable water, and cloud and weather. This file has over one thousand lines and most

of the code are not related to the PrepBUFR decoding. Here, as an example, we deleted all

the code that are not for PrepBUFR decoding and shortened the file down to 197 lines. The

full code is listed in the Appendix B and can be downloaded from the Examples Page of

the BUFR website. Here we will only show the mnemonics used by the GSI PrepBUFR

decoding to get an idea what are the GSI expected variables from the PrepBUFR file.

 data hdstr /'SID XOB YOB DHR TYP ELV SAID T29'/

 data hdstr2 /'TYP SAID T29 SID'/

 data obstr /'POB QOB TOB ZOB UOB VOB PWO CAT PRSS' /

 data drift /'XDR YDR HRDR '/

 data sststr /'MSST DBSS SST1 SSTQM SSTOE '/

 data qcstr /'PQM QQM TQM ZQM WQM NUL PWQ '/

 data oestr /'POE QOE TOE NUL WOE NUL PWE '/

 data satqcstr /'QIFN'/

 data prvstr /'PRVSTG'/

 data sprvstr /'SPRVSTG'/

 data levstr /'POB'/

 data metarcldstr /'CLAM HOCB'/ ! cloud amount and cloud base height

 data metarwthstr /'PRWE'/ ! present weather

 data metarvisstr /'HOVI'/ ! visibility

 data geoscldstr /'CDTP TOCC GCDTT CDTP_QM'/

Compared to the PrepBUFR processing examples we provided, we can see that there is

more information expected by the GSI PrepBUFR interface. Please note that not all the

variables listed in the above mnemonics are needed for a GSI run. Some are for certain

special GSI applications only, such as the cloud observations, which are used in the Rapid

Refresh system only. So, if users only want to generate a PrepBUFR file that contains a

part of the observations expected by these mnemonics, the GSI still can run successfully

Observations

 54

and use the observation data to get a final analysis. But from the previous introduction to

the GSI observation data processing procedure, users can see that there are many steps

involved in the data usage in the GSI analysis. A complete picture of the data flow in GSI

system will be very helpful for users who work on data impact studies with GSI, especially

when they need to generate the new PrepBUFR file for their new data.

Example 2: read_airs.f90:

The file read_airs.f90 is in GSI source code directory (./src/main) and it reads BUFR

format AQUA radiance (brightness temperature) observations. This file has 768 lines. To

simplify this example, we deleted all the code that is not related to the BUFR decoding and

shortened the file down to 82 lines. The full code is listed in the Appendix and can be

download from the Examples Page of the BUFR website. Again, we will only show the

lines that include mnemonics used by decoding to get an idea what variables are expected

by GSI from the AIRS BUFR file.

allspotlist='SIID YEAR MNTH DAYS HOUR MINU SECO CLATH CLONH SAZA BEARAZ FOVN'

 call ufbrep(lnbufr,allchan,1,n_totchan,iret,'TMBR')

 call ufbint(lnbufr,aquaspot,2,1,iret,'SOZA SOLAZI')

Here, we highlight the mnemonics and we will leave then for users to find out the exactly

meaning of these mnemonics by checking the BUFR table.

Summary:

In the course of preparing this document and extending the BUFR/PrepBUFR support for

GSI, we outline portions of 4 GSI BUFR ingest interface files for users to reference:

read_prepbufr.f90

read_airs.f90

read_bufrtovs.f90

read_gps.f90

Users can find these files in the Examples Page of the BUFR user’s website. There is

makefile provided with these files to help users properly compile the code. These files can

also be used to decode the corresponding NCEP operation PrepBUFR/BUFR files.

7.4 NCEP generated BUFR files

7.4.1 Knowledge on NCEP BUFR/PrepBUFR files

 NCEP saves most of the observation data in WMO BUFR format. PrepBUFR is the final
step in preparing most of the observations for data assimilation, the NCEP term for

Observations

 55

“prepared” or QC’d data in BUFR format (NCEP convention/standard). Please note
that a PrepBUFR file is still a BUFR file, but has more QC information. NCEP uses
PrepBUFR files to organize conventional observations and satellite retrievals as well
as other related information (such as quality marks) into single files. The BUFRLIB
software and BUFR table are needed for processing BUFR/PrepBUFR files.

NCEP generates different BUFR/PrepBUFR files for each of its operation systems. The

“PrepBUFR” includes the major conventional observations for assimilation into the various

NCEP analyses, including the North American Model (NAM) and NAM Data Assimilation

System (NDAS), unified grid-point statistical interpolation analysis (GSI) (the "NAM" and

"NDAS" networks), the Global Forecast System and Global Data Assimilation System

unified GSI (the "GFS" and "GDAS" networks), the Climate Data Assimilation System

SSI (the "CDAS" network), the Rapid Update Cycle (the "RUC" network) and the Real

Time Mesoscale Analysis (the "RTMA" network).

 In this section, we will briefly introduce several types of BUFR/ PrepBUFR files mostly

accessed by the research community to help users decide which one is the best for their

GSI applications. Each type of BUFR/PrepBUFR file has its own coverage, data cut-off

time, and quality control procedures, which result in different quality marker values for the

same observation in different files.

● File name convention:

The following is a list of example file names we collected from NCEP FTP site:

gdas1.t00z.prepbufr.nr

gfs.t00z.gpsro.tm00.bufr_d

ndas.t18z.1bamub.tm03.bufr_d

nam.t00z.aircar.tm00.bufr_d.nr

ndas.t18z.prepbufr.tm03.nr

These file names reflect information of the observations within the file. Let us

explain the meaning of the filenames, segment by segment, separated by dots:

○ The 1st section is the operation system name, indicating which operation

system this file is created/used for. For example: gdas1 is for the Global

Data Assimilation System (GDAS), gfs for the Global Forecast System

(GFS), ndas for the North American Data Assimilation System (NDAS),

nam for the North American Mesoscale (NAM) forecast system.

○ The second section is analysis hour, indicating which analysis hour this file

is used for. For example: t00z is for 00Z analysis, t18z for 18Z analysis.

○ The third section is data type, indicating what kinds of data are included in

the file. For example: prepbufr is for conventional observations, gpsro for

GSPRO, 1bamub for AMSU-B, and aircar for aircraft observations.

Observations

 56

○ From fourth section, there is different information for different operational

files:

■ bufr_d tells us it is a BUFR format file. We may think prepbufr as a

special data “format” here.

■ nr tells us that the file only includes non-restricted data (we can only

access non-restricted data).

■ tm00 and tm03, where the two digital number is hours. They also

indicate the time of the file used in the analysis. When the number is

00, the file analysis time is the same as showed in the second

segment. When it is a number larger than 0, it indicates the analysis

time of the file is the time in the second segment minus this number.

For example: the analysis time for ndas.t18z.1bamub.tm03.bufr_d is

15Z (18Z - 03h = 15Z). This file is used in the catch up cycles

during NDAS that have a delayed analysis start time to wait for more

observations.

● Data coverage and cut off time:

Each operational system requires different data types, data coverage, cut off time,

and quality control procedures. The details of these setups need a long technical

note to describe but here we can briefly introduce some major features of each file:

○ GDAS (gdas1) covers the global and has the latest cut off time (6 hours),

which means it includes most of the available real-time observation data.

○ GFS (gfs) covers the global but has a shorter cut off time (2:45 hours)

compared to GDAS.

○ NDAS(ndas) covers the North America and has a longer cut off time than

NAM, which means it includes more real-time data than NAM.

○ NAM(nam) covers the North America but has a shorter cut off time

comparing to others.

○ Data quality control processes for PrepBUFR files in each observation

system are different but their results are reflected as quality markers, which

can be easily checked by decoding the specific PrepBUFR file.

○ For data types in each PrepBUFR file, please check the following section.

● Code table for PrepBUFR report types

The complete list of the conventional observation types (and their BUFR codes)

used by each NCEP operation system are documented at the following links:

Global GFS and GDAS GSI analyses:

Observations

 57

http://www.emc.ncep.noaa.gov/mmb/data_processing/prepbufr.doc/table_2.htm

Global CDAS/reanalysis systems:

http://www.emc.ncep.noaa.gov/mmb/data_processing/prepbufr.doc/table_3.htm

Regional NAM and NDAS GSI analyses:

http://www.emc.ncep.noaa.gov/mmb/data_processing/prepbufr.doc/table_4.htm

Rapid Update Cycle (RUC) 3DVAR analysis:

http://www.emc.ncep.noaa.gov/mmb/data_processing/prepbufr.doc/table_5.htm

Here we give a simplified table for the most commonly used data types:

7.4.2 BUFR/PrepBUFR Data Resources for Community Users

There are several sources to get real-time and archived atmospheric observations and

model forecasts. Some of them provide NCEP operation BUFR/PrepBUFR files for

community. Below is a list we are aware of. Users are welcome to send us new data source

links to share with the community.

Data in BUFR format

● NCEP NOMADS Site:

○ PrepBufr for GDAS (Global) - 1 month buffer:

http://nomads.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/

○ PrepBufr for NDAS (North America) - 1 month buffer:

http://nomads.ncep.noaa.gov/pub/data/nccf/com/nam/prod/

● NCEP FTP Site:

○ PrepBufr for GDAS (Global) - 3 day buffer:

ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/

○ PrepBufr for NDAS (North America) - 3 day buffer:

ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/nam/prod/

● NCDC NOMADS Site:

○ PrepBufr for GDAS (Global) - archive starting May 2007:

http://nomads.ncdc.noaa.gov/data/gdas/

http://www.emc.ncep.noaa.gov/mmb/data_processing/prepbufr.doc/table_2.htm
http://www.emc.ncep.noaa.gov/mmb/data_processing/prepbufr.doc/table_3.htm
http://www.emc.ncep.noaa.gov/mmb/data_processing/prepbufr.doc/table_4.htm
http://www.emc.ncep.noaa.gov/mmb/data_processing/prepbufr.doc/table_5.htm
http://nomads.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/
http://nomads.ncep.noaa.gov/pub/data/nccf/com/nam/prod/
ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/
ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/nam/prod/
http://nomads.ncdc.noaa.gov/data/gdas/

Observations

 58

● NCAR Computational and Information Systems Laboratory (CISL) Research Data

Archive (RDA) Site:

○ DS337.0: NCEP ADP Global Upper Air and Surface Observations

(PREPBUFR and NetCDF PB2NC Output) - archive starting May 1997:

http://dss.ucar.edu/datasets/ds337.0/

○ DS337.0 Subset: Interactive tool for running PB2NC over a specified time

period and geographic region:

http://dss.ucar.edu/datasets/ds337.0/forms/337_subset.php

7.5 Observation error adjustment

The actual observation errors used in GSI analysis start with the “external” (either from

PrepBUFR files or an error table file) observation errors in the obserr array and go through

multiple adjustments based on observation quality, vertical sigma location, observation

density, time of the observations, etc. The major adjustments occur in read_prepbufr.f90

and some are listed as follows:

1. Observation errors for each variable are bonded by their corresponding lower limits.

Currently, these lower limits are hard coded and prescribed in read_prepbufr. The

observation error limits for temperature, moisture, wind, surface pressure and total

precipitable water are: terrmin=0.5, qerrmin=0.1, werrmin=1.0, perrmin=0.5,

pwerrmin=1.0, respectively.

2. Observation errors are adjusted based on the quality markers from the prepbufr data

files. If the quality markers from prepbufr are larger than a threshold value (lim_qm

in read_prepbuf.f90r), the corresponding observation errors are adjusted to a very

large number (1.0x10
6
, which indicates a bad observation and will not make any

impact on the analysis results). If the quality markers are smaller than lim_qm, the

observation errors are adjusted based on the vertical location and vertical

distribution of the observations. Please refer to the BUFR/PrepBUFR User’s Guide

for more details on the quality markers and the values of lim_qm.

3. If an observation quality marker is either 3 or 7, the observation error can be

inflated by setting inflate_error as true. The value of the inflation factor may be set

based on observation types. However, currently it is fixed as 1.2.

4. For certain observation types (e.g., T), their observation errors are amplified by a

factor of 1.2 if the observation locations are above 100 hPa.

Besides the above-mentioned adjustments, observation errors are further inflated during the

observation innovation calculation (e.g., in the subroutines listed in section 3.2.4 of the

Advanced User’s Guide) when the observation is located either lower than the lowest

analysis level or higher than the highest analysis level. In the same routine, GSI performs

gross error checks and, if oberror_tune is set to true, observation error tuning (this function

is not discussed in this document).

http://dss.ucar.edu/datasets/ds337.0/
http://dss.ucar.edu/datasets/ds337.0/forms/337_subset.php

Satellite Radiance Data Assimilation

 59

Chapter 8: Satellite Radiance Data Assimilation

Satellite radiance data analysis is one of the most advanced and important features in the

GSI system. GSI has developed complex functions and code components to ingest,

analyze, bias correct, and monitor radiance observations from various satellite instruments.

In this chapter, we will discuss these satellite radiance analysis related aspects from the

users point of view, including how to correctly setup and run GSI with radiance

observations, how to check and understand the radiance analysis results, bias correction,

and monitoring radiance observations. Related code structure will also be described to help

advanced users to further investigate and apply radiance data analysis with GSI.

8.1. Satellite radiance data ingest and distribution

8.1.1 link radiance BUFR files to GSI recognized names

All radiance observations used by the GSI are saved in the BUFR format. For detailed

information on the BUFR format and its processing techniques, please see the

BUFR/PrepBUFR User’s Guide, which is available on line:

http://www.dtcenter.org/com-GSI/BUFR/docs/index.php

In the Section 3.1 of this user’s guide, we introduced all GSI BUFR/PrepBUFR

observation files and the GSI recognized observation file names in table 3.1. From this

table, we can see most of the BUFR files are used for satellite radiance data. Here, we will

use a small part of the table to explain the link between the GSI name and the file name:

GSI Name Content Example file names

amsuabufr AMSU-A 1b radiance (brightness

temperatures) from satellites NOAA-15,

16, 17,18, 19 and METOP-A

gdas1.t12z.1bamua.tm00.bufr_d

amsubbufr AMSU-B 1b radiance (brightness

temperatures) from satellites NOAA15,

16,17

gdas1.t12z.1bamub.tm00.bufr_d

The right column of the table gives example radiance BUFR files that can be downloaded

from the NCEP data servers (please see BUFR/PrepBUFR user’s guide for the naming

convention for these files), while the left column is the data file name that GSI expects

during observation data ingestion. The middle column is a brief explanation of the data

content in each file.

As explained in section 5.2.1, running radiance data analysis with GSI could be as simple

as linking the radiance BUFR files to the GSI run directory with the GSI recognized name

in the run script. For example, if we add the following two lines to the GSI run script:

http://www.dtcenter.org/com-GSI/BUFR/docs/index.php

Satellite Radiance Data Assimilation

 60

Link to the radiance data

ln -s ${OBS_ROOT}/gdas1.t12z.1bamua.tm00.bufr_d amsuabufr

ln -s ${OBS_ROOT}/gdas1.t12z.1bamub.tm00.bufr_d amsubbufr

we should see that AMSU-A and AMSU-B observations are analyzed in the GSI analysis,

as illustrated in the rest of Section 5.2. Here, we will give more detail on the setup and

usage of the GSI recognized observation file name (GSI name) in the left column of the

table 3.1.

The GSI names, amsuabufr and amsubbufr, are actually decided by the parameters in

the GSI namelist section OBS_INPUT. As an example, the relevant part of OBS_INPUT

is:

 dfile(28)='amsuabufr', dtype(28)='amsua', dplat(28)='n15', dsis(28)='amsua_n15',

 dfile(29)='amsuabufr', dtype(29)='amsua', dplat(29)='n16', dsis(29)='amsua_n16',

 dfile(30)='amsuabufr', dtype(30)='amsua', dplat(30)='n17', dsis(30)='amsua_n17',

 dfile(31)='amsuabufr', dtype(31)='amsua', dplat(31)='n18', dsis(31)='amsua_n18',

 dfile(32)='amsuabufr', dtype(32)='amsua', dplat(32)='metop-a', dsis(32)='amsua_metop-a',

 dfile(33)='airsbufr', dtype(33)='amsua', dplat(33)='aqua', dsis(33)='amsua_aqua',

 dfile(34)='amsubbufr', dtype(34)='amsub', dplat(34)='n15', dsis(34)='amsub_n15',

 dfile(35)='amsubbufr', dtype(35)='amsub', dplat(35)='n16' dsis(35)='amsub_n16',

 dfile(36)='amsubbufr', dtype(36)='amsub', dplat(36)='n17', dsis(36)='amsub_n17',

Please note that the last two columns of the OBS_INPUT have been excluded for

conciseness. From this list, we can see the content of dfile is the GSI name, which is the

observation file name recognized by GSI, while dtype and dplat indicate the radiance

instruments and the satellite name associated with the GSI name in dfile. The dsis is the

radiance observation type that is the combination of the instruments and satellite names.

This list tells us that the GSI expects NOAA-15 AMSU-A radiance observations from a

BUFR file with name amsuabufr. It also reads in the NOAA-18 AMSU-A observations

from the same file. For NOAA-17 AMSU-B observations, GSI will read them in from a

file named amsubbufr.

It is possible to change the GSI name in dfile to a user specified name (for example,

‘amsuagsi’ rather than 'amsuabufr') as long as the GSI name (amsuabufr)in the link from

the BUFR file (gdas1.t12z.1bamua.tm00.bufr_d) to the GSI name has also been

changed. The following demonstrates the process required to change the name in dfile.

Set new name in namelist section OBS_NPUT:

 dfile(28)='amsuagsi', dtype(28)='amsua', dplat(28)='n15', dsis(28)='amsua_n15',

 dfile(29)='amsuagsi', dtype(29)='amsua', dplat(29)='n16', dsis(29)='amsua_n16',

Then change the GSI name in the run script:

ln -s ${OBS_ROOT}/gdas1.t12z.1bamua.tm00.bufr_d amsuagsi

It is advised to use the GSI names provided in the released run script because they describe

the contents of the file well and are used by many users. However, the flexibility to setup a

different GSI name does give GSI more ability to analyze radiance observations from

Satellite Radiance Data Assimilation

 61

different resources. For example, if we want GSI to assimilate NOAA-15 AMSU-A

observations from a BUFR file named gdas1.t12z.1bamua.tm00.bufr_d and

NOAA-16 AMSU-A observations from another BUFR file named

gdas2.t12z.1bamua.tm00.bufr_d, we can setup the run script and namelist as

follows:

Set the GSI names in the namelist section OBS_INPUT:

 dfile(28)='amsuabufr', dtype(28)='amsua', dplat(28)='n15', dsis(28)='amsua_n15',

 dfile(29)='amsuagsi', dtype(29)='amsua', dplat(29)='n16', dsis(29)='amsua_n16',

And then, link them in the run script:

ln -s ${OBS_ROOT}/gdas1.t12z.1bamua.tm00.bufr_d amsuabufr

ln -s ${OBS_ROOT}/gdas2.t12z.1bamua.tm00.bufr_d amsuagsi

Now, GSI will read in NOAA-15 AMSU-A observations from the GSI file amsuabufr,

which is the BUFR file gdas1.t12z.1bamua.tm00.bufr, and read in NOAA-16

AMSU-A observations from another GSI file amsuagsi, which is the BUFR file

gdas2.t12z.1bamua.tm00.bufr.

A common user mistake in the setup of the radiance data analysis is forgetting to add the

radiance observation type the user wants to use into the OBS_INPUT. Some users may

notice that NOAA-19 AMSU-A is not on the list of the OBS_INPUT setups in release

version 3.0. To use GSI to analyze NOAA-19 AMSU-A observations with the run script

and name list from release version 3.0, users need to add one more line in OBS_INPUT,

for example:

 dfile(79)='amsuabufr', dtype(79)='amsua', dplat(79)='n19', dsis(79)='amsua_n19',

Where index 79 for this new line is from the existing number of parameter “ndat” in

namelist section SETUP plus 1. The “ndat” should also be set to 79.

In this case, NOAA-19 AMSU-A observations should be included in the BUFR file that

amsuabufr is linked to. The released run script will be continually updated to include new

satellite platforms, however users are suggested to double-check the content of the BUFR

file and the setup of the namelist if desired data types are missing from the analysis.

The radiance data normally need to be thinned in the analysis, the last column (dthin(26)=1,)

in the namelist section OBS_INPUT is used to setup radiance data thinning. The details of

radiance data thinning are described in section 3.3 under item 7.

More detailed control on how to use each channel of certain radiance observation types in

the GSI analysis can be achieved by setting up the satinfo file. The use of the satinfo file

was previously introduced in section 4.3. Please note the satinfo file may be structured

differently in different released versions.

Satellite Radiance Data Assimilation

 62

8.1.2 GSI Code to ingest radiance data

GSI has a set of files (subroutines) named read_*.f90 to read in different types of

observations, including satellite radiance. The table in Section 6.2.3 gives a complete list of

such subroutines. Below is an excerpt of the table that applies to radiance data:

From this table, we can see TOVS 1b observations from the NOAA and METOP satellites

are read in by subroutine read_bufrtovs and the GEOS sounder and SSMI observations are

read in by subroutine read_goesndr and read_ssmi.

In general, GSI reads in radiance observations from external BUFR files, picks the

observations within the analysis domain and time window, performs thinning based on the

coarse grid setup in OBS_INPUT, and saves them into an intermediate binary file using a

general data format across all observation types.

In this user’s guide, we will use subroutine read_bufrtovs (read_bufrtovs.f90) as an

example to introduce some important aspects of GSI radiance observation ingesting. All

these aspects can be extended to other radiance ingesting subroutines because they share

the same code structure and BUFR techniques. We hope these points can help advanced

users learn the detailed content inside the GSI radiance observation process and add new

observations for their GSI application.

 BUFR file ingesting

The basic structure of BUFR file ingesting has two loops to read in every message

(read_subset) from the BUFR file and then read in all observations (read_loop) from

each message. In the subroutine read_bufrtovs, the two loops are marked by the following

code:

Data type

(ditype)

Observation type

(obstype)

Subroutine that reads data

rad

(satellite

radiances)

(platform)

not AQUA

amsub

read_bufrtovs

(TOVS 1b data)

amsua

msu

mhs

hirs4,3,2

ssu

sndr, sndrd1, sndrd2

sndrd3, sndrd4

read_goesndr
(GOES sounder data)

ssmi read_ssmi

Satellite Radiance Data Assimilation

 63

! Loop to read bufr file

 next=0

 read_subset: do while(ireadmg(lnbufr,subset,idate)>=0)

 ...

 read_loop: do while (ireadsb(lnbufr)==0)

 ...

! End of bufr read loops

 enddo read_loop

 enddo read_subset

 call closbf(lnbufr)

The content of each observation needed by GSI can be found by searching the BUFR

mnemonics (bold in following code sample), for example, the following lines of the code

give a list of mnemonics included in the subroutine:

 hdr1b ='SAID FOVN YEAR MNTH DAYS HOUR MINU SECO CLAT CLON CLATH CLONH HOLS'

 if (atms) hdr1b ='SAID FOVN YEAR MNTH DAYS HOUR MINU SECO CLAT CLON CLATH CLONH HMSL'

 hdr2b ='SAZA SOZA BEARAZ SOLAZI'

 call ufbrep(lnbufr,data1b8,1,nchanl,iret,'TMBR')

 call ufbrep(lnbufr,data1b8,1,nchanl,iret,'TMBRST')

An explanation of each mnemonic can be easily found from the BUFR table used to

generate this BUFR file. Users can get this BUFR table on-line, from decoding the BUFR

file, or checking the BUFR file bufrtab.012 in the fix directory of the release package. For

example, a search for SAZA SOZA in bufrtab.012, we found the following two lines:

| SAZA | 007024 | SATELLITE ZENITH ANGLE |

| SOZA | 007025 | SOLAR ZENITH ANGLE |

These lines tell us that GSI needs to read in satellite zenith angle and solar zenith angle for

each observation profile.

 Data selection in reading process

In the data ingesting subroutine, only observations within the analysis domain (for regional

applications) and time window are processed for the thinning. After establishing a coarse

grid based on the setups in the parameters from OBS_INPUT, GSI starts a smart selection

of radiance fields of view for the coarse grid. This processing of radiance data thinning not

only selects the nearest radiance observation in a coarse grid, but also considers the quality

of the radiance observations. The observation for each grid box is chosen based on its

quality through a combined penalty value that considers the following criteria:

1. Remove observations where the key channels are bad

2. Prefer observations that have a larger number of good channels

3. Skip observations that the Field of View (FOV) are out of range

Satellite Radiance Data Assimilation

 64

4. Prefer profiles that are over better surface fields. For many observation types,

the order is (best to worst): sea, sea ice, snow/ land, mixed but this may vary by

instrument.

5. Prefer observations based on available data quality predictors

 Internal observation data format

After data thinning, the best quality radiance observation for each coarse grid is then saved

with surface status (calculated from the background) in a two-dimensional array called

“data_all”. The 1
st
 dimension of the array saves all information about one observation and

the 2
nd

 one loops through the observations. The code that assigns the content of the array

starts like:

 data_all(1 ,itx)= rsat ! satellite ID

 data_all(2 ,itx)= t4dv ! time

 data_all(3 ,itx)= dlon ! grid relative longitude

 data_all(4 ,itx)= dlat ! grid relative latitude

and ends like:

 do i=1,nchanl

 data_all(i+nreal,itx)=data1b8(i)

 end do

The code itself gives clear notation on the content of the 1
st
 dimension of the array except

for the last three lines. For example, it clearly tells us the first 4 items in the array are

satellite ID (rsat), observation time (t4dv), and grid relative longitude (dlon) and latitude

(dlat). However, there is no clear notation for data_all(i+nreal,itx), a little search for

the array data1b8 indicates it contains the brightness temperature from all channels in an

observation profile.

After reading and processing all observations in the BUFR file and saving them in the data

array “data_all”, this array is written to an intermediate binary file at the end of the

subroutine read_bufrtovs.

 Observation count in stdout file

From the stdout file, we can see the following information counting the data during the data

ingesting stage, an example from the case in Chapter 5:

READ_BUFRTOVS: file=amsuabufr type=amsua sis=amsua_n15 nread= 128055

ithin= 2 rmesh= 60.000000 isfcalc= 0 ndata= 53932 ntask= 1

This tells us that the subroutine read_bufrtovs is reading NOAA-15 AMSU-A observations

from file amsuabufr. There are 128055 observations (profile number * channels number)

read in from the BUFR file and 53932 observations kept for further processing after data

selection and thinning.

Satellite Radiance Data Assimilation

 65

8.1.3 information on ingesting and distribution

The analysis in GSI is done in each subdomain for MPI runs. The observation number in

each sub-domain can be found in the stdout file. All data types are listed in the stdout file

as shown in the following example, using the same example as section 5.2.2:

OBS_PARA: ps 2352 2572 8367 2673

OBS_PARA: t 4617 4331 12418 4852

OBS_PARA: q 3828 3908 11096 3632

OBS_PARA: pw 89 31 141 23

OBS_PARA: uv 5704 4835 15025 4900

OBS_PARA: sst 0 0 2 0

OBS_PARA: hirs4 metop-a 0 0 416 731

OBS_PARA: amsua n15 2563 1323 1048 1669

OBS_PARA: amsua n18 1002 2119 0 390

OBS_PARA: amsua metop-a 0 0 1268 2279

OBS_PARA: amsub n17 0 0 1717 2891

OBS_PARA: hirs4 n19 244 1093 0 235

OBS_PARA: amsua n19 651 3486 0 469

Please note the number in each subdomain is the number of the radiance profiles, not the

number of observed channels. Each profile includes many channels. For example, each

HIRS observation has 19 channels, each MSU has 4 channels, each AMSU-A has 15 and

AMSU-B has 5, each MHS has 5 and SSU has 3.

8.2. Radiance observation operator

The observation operator for radiance observations is very complex and out of the scope of

this user’s guide. Here, we only briefly introduce some features of the radiance observation

operator. The Community Radiative Transfer Model (CRTM) developed by JCSDA is

employed by the GSI system to transform control variables into simulated radiance or

brightness temperatures. This operator can be illustrated by the following equation:

 y=K(x,z)

 where:

y are simulated radiance observations;

x are profiles of temperature, moisture, and ozone;

K is the radiative transfer equation (CRTM);

z are unknown parameters such as the surface emissivity, CO2 profile, methane

profile, etc.

In GSI, x (including surface conditions) are calculated based on the background fields and

then are put into the CRTM functions (K) to calculate the simulated radiance observations

y. When unknowns in K(x, z) are too large, which may be from the formulation of K or

unknown variables (z), observed radiance data cannot be reliably used and must be

removed during quality control. Examples of this include when clouds, trace gases, or

aerosols exist in the observed column. The description of radiance data quality control can

be found in the next section. For advanced users needing to learn the details of the radiance

Satellite Radiance Data Assimilation

 66

observation operator in GSI, please check the corresponding subroutine listed in the right

column of the section 6.2.4 table.

Because GSI uses the CRTM functions as part of the radiance observation operator, the

CRTM coefficients have to be available during the radiance data analysis. In the GSI

release package, these CRTM coefficients are linked to the running directory by the run

script before the GSI starts to run. The details of linking CRTM coefficients can be found

in Chapter 3 in the introduction of the GSI run scripts. Please note that the GSI run script

does not know which kind of radiance observations will be used in the analysis. The script

links all the CRTM coefficients for the radiance observation types listed in the satinfo file.

After reading in radiance observations from BUFR files, GSI recognizes which kind of

radiance observations to be used and only reads in the corresponding coefficients needed.

Therefore, users only need to check whether the CRTM coefficients of the user interested

radiance data types are linked correctly. At the same time, users can ignore the warning

information on the missing CRTM coefficients if those coefficients are for the radiance

data types that are not used in the application.

8.3. Radiance observation quality control

The quality control (QC) may be the most important aspect of satellite data assimilation.

Unlike conventional observations from a prepbufr file, which includes the quality markers

from the NCEP quality control process, the satellite radiance BUFR file does not include

observation quality information. Instead, the quality control for radiance observations is

inside the GSI.

The GSI radiance data quality control starts right after the radiance observations are read in

(such as in read_bufrtovs.f90). We can think of the processing of radiance data thinning as

a part of the quality control because the thinning process selects the best quality

observations. The major radiance data quality control step is after the calculation of the

radiance observation departure in file setuprad.f90. Many QC steps are employed to

capture problematic satellite data, which mainly come from the following 4 sources:

 Instrument problems

 Clouds and precipitation simulation errors

 Surface emissivity simulation errors.

 Processing errors (e.g., wrong height assignment, incorrect tracking, etc.)

In GSI, each instrument has its own quality control subroutine. All these subroutines are in

the file qcmod.f90 and are listed as follows for reference:

Satellite Radiance Data Assimilation

 67

subroutine name Quality Control for

qc_ssmi ssmi, amsre, and ssmis

qc_seviri seviri data

qc_ssu ssu data

qc_goesimg GOES image

qc_msu msu data

qc_irsnd ir sounder data(hirs, goessndr, airs, iasi, cris)

qc_avhrr avhrr and avhrr_navy

qc_amsua amsua data

qc_mhs amsub, mhs and hsb data

qc_atms atms data

After calculating the radiance observation departure from the background and bias

correction, these QC functions are called for each instrument to either toss the bad

(questionable) observations or inflate the low confidence observations. The number of

filtered observations by these QC functions is summarized in the radiance fit file (fort.207)

as 7 QC categories (steps). To help users understand the meanings of these numbers in the

radiance fit file, we will briefly introduce these QC steps in subroutine qc_amusa in the

following table. Please note these QC categories may have different meaning for different

instruments:

Category Quality Control steps Action to observations
QC1 Cloud affected profile, (factch4 > 0.5) Toss channel 1-6, 16

QC2 Inaccurate emissivity /surface temperature

estimate over sea

Toss channel 1-6, 16

QC3 Cloud affected profile (Scattering index

factch6 > 1.0)

Toss channel 1-7, 16

QC4 Inflate observation error over high terrain

(>2000m)

Inflate channel 7

observation error

QC5 Inflate observation error over high terrain

(>4000m)

Inflate channel 8

observation error

QC6 Retrieved could liquid water path > 1.0 Part of QC1

QC7 Part of Scattering index > 1.0 Part of QC3

Using the same example as section 4.5.2:

 sat type penalty nobs iland isnoice icoast ireduce ivarl nlgross

 n15 amsua 19769.16042371 4149 673 1475 268 1311 30453 0

 qcpenalty qc1 qc2 qc3 qc4 qc5 qc6 qc7

 19769.16042371 883 63 2127 183 0 20 46

Using the above table, we can understand numbers listed under qc1 to qc7. Listed below

also includes the explanation of the numbers not in the above table, for a complete

understanding of this part of the radiance fit file. For other portions of the fit file, please see

the introduction in section 4.5.2.

Satellite Radiance Data Assimilation

 68

From the above example, we see there are 4149 NOAA-15 AMSU-A profiles after

thinning, among which there are:

673 profiles over land (iland)

1475 profiles over snow or ice (isnoice)

268 profiles over coast (icoast)

1311 profiles within tropics that has reduced qc bounds (ireduce)

30453 channels that failed in the general gross check (ivarl)

0 channels that passed the general gross check but failed the nonlinear gross check (nlgross)

883 profiles were tossed because of cloud affect based on factch4

63 profiles were tossed because of inaccurate emissivity /surface temperature estimate over sea

2127 profiles were tossed because of cloud affect based on factch6

183 profiles have inflated observation error because of high terrain (>2000m)

0 profiles have inflated observation error because of high terrain (>4000m)

20 profiles meet criterion QC6 (part of qc 1)

46 profiles meet criterion QC7 (part of qc 3)

So, nearly ¾ of the observations were tossed because of cloud effects.

8.4. Bias correction for radiance observations

Using bias correction to correct the system bias in the satellite radiance observations is one

of the key steps to get a successful satellite radiance data assimilation. This section will

introduce the basic theory of the GSI bias correction, the procedures and configurations of

the bias correction in the GSI system, an explanation of the namelist, satinfo, and

coefficients for bias correction, the use of the angle bias correction utility, and discussions

of some common issues users encounter in the application of the GSI bias correction.

8.4.1. Bias correction for satellite observations

Observation bias can systematically damage the data assimilation results and,

consequently, the quality of the forecasting system. Biases in satellite observations are of

particular concern because they may larger than the signal and damage the numerical

weather prediction system in a very short period of time.

Biases between the satellite observations and the model may come from the following

sources:

 satellite instrument itself (e.g. poor calibration or characterization, or adverse

environmental effects);

 radiative transfer model (RTM) linking the atmospheric state to the radiation

measured by the satellite (e.g. errors in the physics or spectroscopy, or from non-

modeled atmospheric processes);

 systematic errors in the background atmospheric state provided by the NWP model

used for monitoring.

Satellite Radiance Data Assimilation

 69

In GSI, satellite observation bias is represented as a linear regression based on N state-

dependent predictors Pi(x), with associated coefficients βi :

Since the bias correction is applied to the radiance departures, this is equivalent to using the

modified definition of the observation operator:

H (x, β)=H(x)+BC(β, x)

The training of the bias correction consists in finding the vector β that allows the best fit

between the NWP fields x and the observations. This is obtained by minimizing the

following cost function:

For more details on the bias correction, please see the references listed below:

1. Auligne T., A. P. McNally and D. P. Dee. 2007. Adaptive bias correction for satellite data in a numerical

weather prediction system. Q. J. R. Meteorol. Soc. 133: 631-642.

2. Derber JC, Wu W-S. 1998. The use of TOVS cloud-cleared radiances in the NCEP SSI analysis system.

Mon. Weather Rev. 126: 2287–2299.

3. Harris BA, Kelly G. 2001. A satellite radiance-bias correction scheme for data assimilation. Q. J. R.

Meteorol. Soc. 127: 1453–1468.

4. Dee, D. P., 2004: Variational bias correction of radiance data in the ECMWF system. Pp. 97–112 in

Proceedings of the workshop on assimilation of high-spectral-resolution sounders in NWP. 28 June–1

July 2004, ECMWF, Reading, UK.

5. Dee, D. P. and S. M. Uppala, 2009, Variational bias correction of satellite radiance data in the ERA-

Interim reanalysis. Q. J. R. Meteorol. Soc. 135, 1830–1841.

8.4.2. The GSI Bias correction procedure and configurations

In GSI, the bias correction for satellite radiance has two parts: one part is air mass bias

correction, also called the variational part of the bias correction; another part is angle

dependent bias correction. Each part of bias correction has its own bias correction

coefficient file:

● The satbias_angle file contains the angle dependent part of the brightness

temperature bias for each channel/instrument/satellite. Also included in this file is

the mean temperature lapse rate for each channel weighted by the weighting

function for the given channel/instrument.

● The satbias_in file contains the coefficients for the variational part of the bias

correction.

Satellite Radiance Data Assimilation

 70

GSI will read in the coefficients from both satbias_angle and satbias_in files, combine

them together with predictors to generate a system bias value for each channel, and then

subtract this system bias from the observation innovation during the radiance observation

operator calculation. During the minimization process, GSI will calculate the updated

coefficients for the predictive part of the bias correction and save the updated coefficients

in another file called “satbias_out”. The angle dependent bias coefficients are updated

outside of GSI using a utility named gsi_angleupdate in the release package. These new

mass and angle dependent bias coefficients should be used for the bias correction in the

next cycle of the GSI analysis.

To set up the bias correction for satellite radiance in the GSI system, users need to link the

right coefficient files in the run directory and keep the coefficient files updated in cycles:

Step 1, Link coefficient files for both air bias correction and angle dependent bias into the

GSI run directory before running the GSI executable.

The coefficient files should come from the previous data assimilation cycle. However, if

there is no previous data analysis cycle, the sample coefficient files can be copied from the

directory ./fix within the community release version as a cold start. When using the run

script with the released version, the following lines in the run script copy the coefficient

files:

SATANGL=${FIX_ROOT}/global_satangbias.txt

SATINFO=${FIX_ROOT}/global_satinfo.txt

...

 cp $SATANGL satbias_angle

 cp $SATINFO satinfo

for satellite bias correction

cp ${FIX_ROOT}/sample.satbias ./satbias_in

Within the directory ./fix, the sample angle dependent bias correction coefficients file is

called global_satangbias.txt, and the file for mass bias correction coefficients is

sample.satbias. Here, we also include the copy to the satinfo file because the bias

correction needs information from the satinfo file.

Step 2, Run GSI and save the output from the mass bias correction for next cycle

After running the GSI, an updated coefficient file for the mass bias correction is generated

in the run directory. This file is called “satbias_out”, which should be saved for the next

cycle of the GSI analysis. There is a line commented out in the released GSI run script

reserved for this purpose. The user should choose how to save the file for the next cycle:

GSI updating satbias_in

cp ./satbias_out ${FIX_ROOT}/sample.satbias

Step 3, Run the angle dependent bias correction utility after GSI runs and save updated

coefficients of angle dependent bias correction for use in the next cycle

Satellite Radiance Data Assimilation

 71

The update of the coefficients for angle dependent bias correction is done by a stand alone

application named gsi_angleupdate located under the directory ./util, but outside the GSI

itself. This application reads in the diag files from the GSI analysis results and the old

angle dependent bias coefficients, updates the coefficients and saves them as a new file

called “satbias_ang.out”. We will introduce how to apply this utility in the next section.

Please note the cycling of the coefficients to let the bias information accumulate during the

data assimilation cycle is the key to getting the right bias correction.

8.4.3 Namelist, satinfo, and coefficients for bias correction

To conduct the bias correction, GSI needs several pieces of information from different

files:

● The satellite platform information from the GSI namelist

● The usage information for each channel from the satinfo file

● The coefficients from both mass and angle dependent bias correction coefficient

files

The following is a brief introduction to these files to help the user to understand the

contents of each file and know how to check if the user interested satellite channels are

correctly configured in these files.

● The satellite platform information from the GSI namelist

The complete explanation of the GSI run script and most often used namelist options can

be found in Chapter 3 of this guide. More details of setting up radiance data analysis in the

run script are described in section 1 of this chapter. Users should make sure that required

satellite instruments and platforms are in the list in &OBS_INPUT and have been correctly

linked to the BUFR files.

Also, the following is a list of GSI namelist options related to the bias correction:

Variable name Default value Description
diag_rad .true. logical to turn off or on the diagnostic radiance file

(true=on)

passive_bc .false. logical to turn off or on radiance bias correction for

monitored channels

adp_anglebc .false. option to perform variational angle bias correction

Satellite Radiance Data Assimilation

 72

● The usage information for each channel from the satinfo file

The GSI uses an information file called “satinfo” to control how to use each radiance

channel. Detailed information about satinfo can be found in the GSI User’s Guide Section

4.3. The following is an example:

!sensor/instr/sat chan iuse error error_cld ermax var_b var_pg icld_det

 amsua_n15 1 1 3.000 9.100 4.500 10.000 0.000 1

 amsua_n15 2 1 2.000 13.500 4.500 10.000 0.000 1

 amsua_n15 3 1 2.000 7.100 4.500 10.000 0.000 1

 amsua_n15 4 1 0.600 1.300 2.500 10.000 0.000 1

 amsua_n15 14 -1 2.000 1.400 4.500 10.000 0.000 -1

 amsua_n15 15 1 3.000 10.000 4.500 10.000 0.000 1

 hirs3_n17 1 -1 2.000 0.000 4.500 10.000 0.000 -1

 hirs3_n17 2 -1 0.600 0.000 2.500 10.000 0.000 -1

 hirs3_n17 3 -1 0.530 0.000 2.500 10.000 0.000 -1

Users can easily understand the first 2 columns are sensor/instrument/satellite and channel

number information. The 3
rd

 column is the usage information, which has the following

meanings:

iuse Channel usage in GSI

-2 do not use

-1 monitor if diagnostics produced

0 monitor and use in QC only

1 use data with complete bias correction

2 use data with no air mass bias correction

3 use data with no angle dependent bias correction

4 use data with no bias correction

For bias correction purposes, please make sure user interested channels are listed in the

satinfo file and have been set to the correct usage flag.

● The coefficients from both mass and angle dependent bias correction coefficient

files

As previously introduced in this section, there are two bias correction coefficient files.

These files include the bias correction coefficients for each channel:

1) satbias_in

This file contains the coefficients for the predictive part of the bias correction (air mass

bias correction coefficients). There is a sample for this file named “sample.satbias” in the

GSI release package under the directory ./fix. All coefficients in this sample file are 0.

Satellite Radiance Data Assimilation

 73

Here, we use NOAA-15 AMSU-A from the satbias_out file from the radiance application

case in Chapter 5 as example:

 1 amsua_n15 1 0.472353 -0.231512 0.291223 0.000634 -0.148959

 2 amsua_n15 2 -0.677697 0.382025 1.424922 -0.000061 0.016514

 3 amsua_n15 3 -2.631062 0.134578 2.968469 -0.004946 1.213581

 4 amsua_n15 4 -0.470401 2.121855 5.764014 0.006496 1.333609

 5 amsua_n15 5 10.996354 -0.762965 1.787372 0.082404 -1.661531

 6 amsua_n15 6 -22.026905 -1.543174 -1.397403 0.175626 -11.384948

 7 amsua_n15 7 -1.954080 -0.293421 0.029899 -0.064129 3.039958

 8 amsua_n15 8 -9.468913 -1.490995 -0.856006 -0.013090 -0.945916

 9 amsua_n15 9 -22.737061 -2.195735 0.247890 -0.357354 -15.298422

 10 amsua_n15 10 -0.875332 2.212551 -0.392323 -0.337414 -8.785395

 11 amsua_n15 11 0.000000 0.000000 0.000000 0.000000 0.000000

 12 amsua_n15 12 2.800800 -4.042608 0.060067 0.913834 15.980004

 13 amsua_n15 13 0.000000 0.000000 0.000000 0.000000 0.000000

 14 amsua_n15 14 0.000000 0.000000 0.000000 0.000000 0.000000

 15 amsua_n15 15 -0.439501 0.539856 0.412582 -0.001741 0.158646

The first 3 columns are series number, the sensor/instrument/satellite, and channel number

of each instrument. Columns 4 through 8 are 5 coefficients for the predictive (air mass) part

of the bias correction, which has 5 predictors.

2) satbias_angle

The satbias_angle contains the angle dependent part of the brightness temperature bias.

There are two sample files for this in the GSI release package under the directory ./fix:

global_satangbias.txt and nam_global_satangbias.txt. Here we only give two channels as

examples from the file global_satangbias.txt:

1 amsua_n15 1 0.528768E-02

 0.063 -0.200 -0.411 -0.588 -0.638 -0.523 -0.493 -0.466 -0.482 -0.475

 -0.666 -0.587 -0.593 -0.602 -0.766 -0.955 -1.080 -1.218 -1.149 -1.374

 -1.553 -1.635 -1.715 -1.783 -1.689 -1.507 -1.473 -1.244 -1.233 -1.259

 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

2 amsua_n15 2 0.290661E-02

 -2.769 -2.880 -2.583 -2.449 -2.218 -1.810 -1.536 -1.242 -0.882 -0.788

 -0.676 -0.697 -0.508 -0.464 -0.544 -0.790 -0.945 -1.108 -1.002 -1.364

 -1.404 -1.315 -1.318 -1.151 -0.826 -0.219 0.086 0.631 1.121 1.807

 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

The first line for each channel looks like:

1 amsua_n15 1 0.528768E-02

2 amsua_n15 2 0.290661E-02

Satellite Radiance Data Assimilation

 74

The columns are series number, the sensor/instrument/satellite, channel number of each

instrument, and “T lap mean”, respectively. The next 90 numbers are coefficients for angle

dependent bias correction. These numbers correspond to the number of the FOV per scan.

For example, AMSU-A has 30 FOV per scan, which is using the first 30 numbers to

represents the bias correction coefficients for each FOV position, while the AMSU-B has

90 FOV per scan, all 90 numbers are used to do bias correction.

If there are some instruments in satinfo but not in satbias_in and satbias_angle, GSI will

set 0 as the initial value for these instruments and write out updated coefficients for these

new instruments in coefficient results files.

8.4.4 enhanced radiance bias correction

Since comGSIv3.3, the enhanced radiance bias correction is available to improve the

radiance bias correction and simplify the biac corrections cycles. In the enhanced radiance

bias correction, the angle bias is also calculated inside GSI instead of outside GSI like

previous versions. This section is tailor based on an email from Yunqiu Zhu on how to

setup the enhance bias correction in GSI , for more details on this enhanced radiance bias

correction, please check the following published paper:

Zhu, Y., Derber, J., Collard, A., Dee, D., Treadon, R., Gayno, G. and Jung, J. A. (2013),

Enhanced radiance bias correction in the National Centers for Environmental Prediction's

Gridpoint Statistical Interpolation data assimilation system. Q.J.R. Meteorol. Soc..

doi: 10.1002/qj.2233

The steps to get the enhanced radiance bias correction running are summarized as follows.

1. Add namelist options to turn on in the SETUP:

In ./run/ run_gsi.ksh, add the following namelist options in section SETUP

 newpc4pred=.true.,adp_anglebc=.true.,angord=4,

 passive_bc=.true.,use_edges=.false.,emiss_bc=.true.,

 diag_precon=.true.,step_start=1.e-3,

You may set the option passive_be=.true. if you want to do bias correction for the

passive channels as well.

2. Link bias files and diag files from previous cycle

Angle bias satbias_angle file and the separate angle bias correction step are no

longer needed. The files required at each analysis cycle are satbias_in, satbias_pc,

and diag files from previous analysis cycle. User can copy satbias_out ,

satbias_pc.out. in prevous cycle to current GSI run directory and rename the files as

satbias_in and satbias_pc. Please make sure that diag files is available to be used

Satellite Radiance Data Assimilation

 75

for the first analysis cycle. The diag file for guess are used here and the time tag is

removed when used in the bias correction, for example, previous cycle has diag file

called: diag_amsua_n18_ges.2014061915 In this cycle for bias correction, this file

should be called: diag_amsua_n18.

Since the format and units of the bias file are changed, at the very first time when

you start to use the enhanced radiance bias correction, please use the released

sample files in fix directory to start:

 rap_satbias_in_enhanced

 rap_satbias_pc_enhanced

3. script changes

Please make sure the GSI run scripts has code to save the diag files and bias files

for the next cycle bias correction.

8.4.5. Utility for Angle Bias Correction outside GSI

Before the enhanced radiance bias correction available, the coefficients for correcting the

angle dependent part of the brightness temperature bias in the GSI are calculated after each

GSI run. The NCEP has developed a tool to calculate these coefficients and, the

community GSI release v3.1 started to include this tool as a part of the release package.

This tool is released as a directory named ./gsi_angupdate within ./comGSIv3.3/util . This

way is still working if users don’t want to use enhanced bias correction.

Please note the community GSI release package version 3.0 doesn’t have this tool. If users

are using the GSI release 3.0 and need this tool, please download the tar file

“gsi_angupdate.tar” from the GSI download page on-line. Once untarred, under the GSI

directory “./comGSIv3/util”, you will see a new directory: ./gsi_angupdate, which includes

the tool to update coefficients for radiance angle dependent bias correction.

 Compile

Inside the directory ./gsi_angupdate, type the following command:

./make

then check if executable “gsi_angupdate.exe” exists in the same directory.

Please note that before compiling this utility, the community GSI should already be

compiled successfully. Please refer to Chapter 2 of this User’s Guide on how to configure

and compile the community GSI.

 Run

Satellite Radiance Data Assimilation

 76

Before running “gsi_angupdate.exe”, make sure that GSI with radiance data have finished

successfully and the diagnostic files that hold O-B information have been generated in the

GSI run directory. The executable ““gsi_angupdate.exe” will read in O-B information from

the diagnostic files for each sensor to update coefficients for angle dependent bias

correction of the sensor.

To help users easily run this tool, a sample run script named run_gsi_angupdate.ksh is

provided within the ./comGSIv3.1.run directory. If a user uses the tar file downloaded

separately on-line, a similar run script can be found in the directory “./comGSI/util” with

the code.

This script is modified based on the GSI run script. The script has a similar structure.

Please check section 3.2.2.1 for instructions on setting up the machine environment, and

section 3.2.2.2 for setting up the run environment. The run environment portion is

illustrated below:

machine set up (users should change this part)

GSIPROC = processor number used for GSI analysis

#--

 GSIPROC=1

 ARCH='LINUX_PBS'

Supported configurations:

 # IBM_LSF,

 # LINUX, LINUX_LSF, LINUX_PBS,

 # DARWIN_PGI

In this script, only four parameters need to be set for a case study. These parameters have

been explained clearly in the run script and illustrated below:

case set up (users should change this part)

ANAL_TIME= analysis time (YYYYMMDDHH)

WORK_ROOT= working directory, where angupdate executable runs

GSI_WORK_ROOT= GSI working directory, where GSI runs

GSI_ANGUPDATE_EXE = path and name of the gsi angupdate executable

 ANAL_TIME=2011032212

 WORK_ROOT=./comGSIv3.1/run/angupdate_${ANAL_TIME}

 GSI_WORK_ROOT=./comGSIv3.1/run/arw_2011032212

 GSI_ANGUPDATE_EXE=./comGSIv3.1/util/gsi_angupdate/gsi_angupdate.exe

These parameters tell the analysis case time, where to find the GSI run directory and

gsi_angupdate.exe, and where to run gsi_angupdate.exe.

The run time information can be found in the stdout file. A successful run should end with

the following information:

Satellite Radiance Data Assimilation

 77

 PROGRAM GLOBAL_ANGUPDATE HAS ENDED. IBM RS/6000 SP

 After a successful run, an updated coefficients file named “satbias_ang.out” should be

found in the run directory.

 Namelist

The namelist for gsi_angupdate.exe has two sections: setup and obs_input. Here, we

only show and illustrate part of the namelist as an example.

 &setup

 jpch=2680,nstep=90,nsize=20,wgtang=0.008333333,wgtlap=0.0,

 iuseqc=1,dtmax=1.0,

 iyy1=${iy},imm1=${im},idd1=${id},ihh1=${ih},

 iyy2=${iy},imm2=${im},idd2=${id},ihh2=${ih},

 dth=01,ndat=50

 /

 &obs_input

 dtype(01)='hirs3', dplat(01)='n17', dsis(01)='hirs3_n17',

 dtype(02)='hirs4', dplat(02)='metop-a', dsis(02)='hirs4_metop-a',

 dtype(03)='goes_img', dplat(03)='g11', dsis(03)='imgr_g11',

 dtype(04)='goes_img', dplat(04)='g12', dsis(04)='imgr_g12',

 dtype(05)='airs', dplat(05)='aqua', dsis(05)='airs281SUBSET_aqua',

 dtype(06)='amsua', dplat(06)='n15', dsis(06)='amsua_n15',

The section obs_input only has three columns, which have the same meaning as their

counterparts in the GSI namelist, i.e., dtype and dplat specify the radiance instrument and

the satellite name, respectively, and dsis indicates the radiance observation type with a

name combining both the instrument and the satellite names.

Most of the parameters in the section setup are different from the section setup in GSI

namelist. We will explain these parameters below:

jpch: total channel number in coefficients file : satbias_ang.in

nstep: maximum number of FOV per scan

iyy1,imm1,idd1,ihh1: start date: year, month, day, and hour

iyy2,imm2,idd2,ihh2: end date: year, month, day, and hour

dth: time interval between start and end date. If start date is not equal to

end date, the code will loop based on dth through the period to

process multiple cycles.

ndat: Number of radiance observation types that can be processed, which

is the dimension for parameters in section: obs_input

iuseqc: >0 (i.e., 1), check variance. If errinv= (1 /(obs error)) is small

(small = less than 1.e-6), the observation did not pass quality

control. In this case, do not use this observation in computing

the update to the angle dependent bias.

Satellite Radiance Data Assimilation

 78

<=0 (i.e., 0 or -1), ensure (o-g)<dtmax. If the user says to ignore the

qc flag, check that the o-g difference falls within the user

specified maximum allowable difference. If the o-g lies outside

this bound, do not use this observation in computing the update

to the angle dependent bias.

dtmax: user specified maximum allowable difference for o-g difference

nsize: the sample size number. If sample size is less than this number, the

updating weight will be reduced based on sample size

wgtang: weight for updating the mean temperature lapse rate

wgtlap: weight for updating angle dependent bias coefficients. The update

will be faster as this number gets bigger.

8.4.6. Discussion of FAQ

In this section, we will discuss some frequently asked questions on satellite radiance bias

correction.

 Where to get bias correction coefficient files for the NCEP operational system.

The real-time satellite bias correction coefficients used for the NCEP operational

system is available on-line from the same website that holds observation

BUFR/PrepBUFR files:

For GDAS: http://nomads.ncep.noaa.gov/ pub/data/n ccf/com/gfs/prod

Once in the sub-directory, look for files with name similar to:

gdas1.t00z.abias for coefficients of mass bias correction.

For NAM: http://nomads.ncep.noaa.gov/ pub/data/n ccf/com/nam/prod

Once in the sub-directory, look for files with name similar to:

nam.t00z.satbias.tm00 for coefficients of mass bias correction.

Right now, the coefficient files for angle dependent bias correction are not available in

these web sites.

 Notes on released satbias_in and satbias_angle

As mentioned in this section, the released version provides sample files for these

coefficients under the directory ./fix:

satbias_in: sample.satbias

satbias_angle: global_satangbias.txt and nam_global_satangbias.txt

http://nomads.ncep.noaa.gov/pub/data/nccf/com/gfs/prod
http://nomads.ncep.noaa.gov/pub/data/nccf/com/nam/prod

Satellite Radiance Data Assimilation

 79

These files are provided as a sample only. Users need to generate their own coefficients

based on their experiments. Usually, these coefficients need to be cycled for a period

(weeks or months) to get to a stage to do the right bias correction.

 What if the user has no bias correction coefficients and only runs short experiments

(e.g., a week) for radiance data assimilation?

Following the suggestion from NCEP experts, the following may help some users

to improve their radiance data assimilation experiments:

1) Start with coefficient files for a date as close as possible to your cases.

2) Run a single GSI analysis with mass bias and angle dependent bias correction.

You can get updated mass bias and angle dependent bias correction coefficient

files.

3) Run the same GSI analysis as step 2 using the same background and

observations but supply GSI with updated mass and angle dependent bias

correction coefficient files.

4) Repeat step 3 about 10 times to spin up the mass and angle dependent

coefficients.

5) Move on to the next cycle or analysis time and repeat steps 2 to 4.

6) After one or two days, the mass coefficient should be ready for the real case

test. Angle dependent bias correction will spin up slowly.

By starting two days prior to your real case period to spin up the coefficients, you

should be able to get better bias correction results.

 Channel lists in satinfo, satbias_in and satbias_angle do not match

The radiance channels in satinfo should match the channels in satbias_in and

satbias_angle. If they do not match, GSI will match satbias_in based on channels in

satinfo:

If radiance channels only exist in satinfo but not in satbias_in, these channels will

be added to the updated coefficient files with 0 as the initial values.

If radiance channels are not in satinfo but are in satbias_in, the extra channels in

satbias_in will be removed from the updated files.

If channels in satinfo and satbias_angle do not match, GSI will use the channels in both

files, but the angle dependent update tool will crash due to the mismatch. Therefore,

users need to make sure the channels in satinfo and satbias_angle match.

 How to select suitable satellite radiance channels when assimilating radiance data with

GSI:

This question is not only for bias correction.

1) Model top and instrument weighting functions:

Satellite Radiance Data Assimilation

 80

Each channel has its own weighting function. If part of the weighting function is

above the model top, you may need to exclude this channel because your model

cannot obtain the correct simulated radiance from background.

2) Bias correction:

If a particular channel cannot be bias-corrected, for reasons such as the channel

is not correctly calibrated or due to instrument failure, you need to turn that

channel off. You may be able to check the time-series of bias for a certain

channel to get an idea of the status of the channel bias correction.

3) Test:

Try to view the data impact of each channel on the forecast to decide which

channel(s) are best for your application. You can monitor and perform bias

correction on each channel for a certain period and then turn that particular

channel from monitoring to usage in order to check the impact of the channel.

8.5. Radiance data analysis monitoring

The NCEP operational GSI system includes a Radiance Monitoring Package to extract

certain radiance data from the GSI radiance diagnostic files and produce images as an aid

to monitor GSI radiance data assimilation performance and diagnose assimilation

problems. This package has been used at NCEP to support the following Radiance

Assimilation Monitoring web site:

http://www.emc.ncep.noaa.gov/gmb/gdas/radiance/index.html

As discussed in the previous sections of this Chapter, radiance data assimilation is a

complex process, in which data quality control and bias correction are key steps for a

successful GSI application with radiance observations. To help users to monitor their

radiance data assimilation with the GSI system, the DTC ported this useful package into

the community GSI system for the Linux platform and included it as one of the utility tools

in the release version 3.1.

NCEP has updated this package since release 3.1. In this release, the Radaince Monitoring

package has been taken out of the official community GSI release to give DTC more time

to port and test the new package. The code and instructions to the Radaince Monitoring

will be available on-line as a separate package. Please send gsi_help@ucar.edu for latest

update on this package.

mailto:gsi_help@ucar.edu

Radar Data Assimilation

 81

Chapter 9 Radar Data Assimilation

The community GSI release version 3.2 and later includes functions for both radar radial

velocity and reflectivity analysis. The radial velocity observations in each bin are used in

variational process with other wind observations to improve wind field. The reflectivity

data are not used in variational process. Instead, they are used by GSD cloud analysis

package inside GSI to improve precipitation hydrometeor analysis and provide temperature

tendency in storm to enhance the storm initialization through WRF DDFI. Currently, the

radial velocity observations are used in NAM operation and reflectivity observations are

used in RAP and NAM operation.

9.1 Prepare Radar Data Files for GSI

9.1.1 Introduction

Real time data feeding for operational radar data analysis with GSI is complex, involving

many steps of data quality control and format converting. But in research, these steps can

be simplified so that community users can generate their own radar data files to feed GSI

for radar data analysis as long as they understand the GSI radar data interface. Since release

version 3.2, a new tool is available to help users understand the GSI radar data interface, it

includes:

 This section to explain the content and structure of the radial velocity and

reflectivity BUFR files used by the GSI.

 Sample code to learn how to encode and decode NCEP Level II radial velocity

BUFR files based on the NCEP radar data preprocess code

 Sample code to read NSSL MRMS mosaics tiles and to interpolate the mosaic to

analysis grid based on the RAP reflectivity preprocess.

Users should already be familiar with the basic BUFR process skills. If not, please visit the

DTC BUFR webpage:

http://www.dtcenter.org/com-GSI/BUFR/index.php

In the comGSIv3.2 package, The new sample code for GSI radar data interface is released

separately from the official package. Users can download it from the same download page

as the comGSIv3.2 package. It is named as “comGSI_v3.2_radar_process.tar.gz” and need

to be placed in directory ./util and un-tared before use. After comGSI_v3.3 release, this tool

is already under ./util directory.

http://www.dtcenter.org/com-GSI/BUFR/index.php

Radar Data Assimilation

 82

9.1.2. GSI interface to Level II radar velocity

To add your own radar level II radial velocity data into GSI analysis, the first thing is to

understand how GSI reads the radial velocity from the radar Level II radial velocity BUFR

files. In current GSI code and run script, the Level II radial velocity BUFR file is named as

“l2rwbufr” and reads in through a subroutine called “radar_bufr_read_all” (in file

read_l2bufr_mod.f90). The main functions of this subroutine are:

 decodes the BUFR file to read in the radial wind observations

 does “super-obbing” to get radar velocity super obs

 write out the new super obs to a binary file called “radar_supobs_from_level2”

Based on this subroutine and the BUFR output interface code from the NCEP radar Level

II radial wind process, we generated two sample codes to illustrate the content and the

structure of the radar level II radial velocity BUFR file used by GSI. Users can find these

two samples under directory ./util/radar_process/radialwind,

 bufr_decode_l2rwbufr.f90 : sample code to decode (read) the radial velocity from

BUFR file “l2rwbufr” and write radial velocity observations in a binary file.

 bufr_encode_l2rwbufr.f90 : sample code to read in radial velocity from the binary

file generated by bufr_decode_l2rwbufr.f90 and then encode (write) the radial

velocity to the BUFR file “l2rwbufr”.

A makefile in the same directory is provided for users to compile the code. The sample

code has to be compiled after successful compile the GSI. It can be compiled with both

Intel and PGI compilers.

9.1.2.1 Read observations from Level II radar radial velocity BUFR files

The sample code bufr_decode_l2rwbufr.f90 only has 87 lines. It has the same structure as

the other BUFR decoding code released by DTC as samples for users to learn BUFR file

decoding. After users know the general BUFR file decoding steps, the key to understand

the radar radial velocity BUFR file decode process is to know all the mnemonics used in

the code and the meanings of these mnemonics. Users can get explanations on each

mnemonic from a BUFR table called “bufr_radar.table”, which is a text file generated

during decoding sample BUFR file “l2rwbufr” using bufr_decode_l2rwbufr.f90.

In this document, we provide the following table to explain the meanings of the mnemonics

used in GSI Level II radial velocity interface. Please refer to the BUFR table itself for more

details.

Radar Data Assimilation

 83

The mnemonics and their meanings for radar Level II radial velocity

mnemonic Meaning dimension
SSTN RADAR STATION IDENTIFIER (SHORT) 1
CLAT RADAR STATION LATITUDE (COARSE

ACCURACY)
1

CLON RADAR STATION LONGITUDE (COARSE

ACCURACY)
1

HSMSL HEIGHT OF RADAR STATION GROUND ABOVE

MSL
1

HSALG HEIGHT OF ANTENNA ABOVE GROUND 1
ANEL ANTENNA ELEVATION ANGLE 1
ANAZ ANTENNA AZIMUTH ANGLE 1
QCRW QUALITY MARK FOR WINDS ALONG RADIAL

LINE
1

YEAR YEAR OF OBSERVATION BEAM 1
MNTH MONTH OF OBSERVATION BEAM 1
DAYS DAY OF OBSERVATION BEAM 1
HOUR HOUR OF OBSERVATION BEAM 1
MINU MINUTE OF OBSERVATION BEAM 1
SECO SECOND OF OBSERVATION BEAM 1
DIST125M DISTANCE FROM ANTENNA TO GATE CENTER

IN UNITS OF 125M
Beam

DMVR DOPPLER MEAN RADIAL VELOCITY Beam
DVSW DOPPLER VELOCITY SPECTRAL WIDTH Beam
SCID RADAR SCAN ID (RANGE 1-21) 1
HNQV HIGH NYQUIST VELOCITY 1
VOCP VOLUME COVERAGE PATTERN 1
VOID RADAR VOLUME ID (IN THE FORM DDHHMM) 1

In NCEP Level II radar radial velocity BUFR file, radar observations are organized and

saved as radial observation beams. Each subset includes observations from one beam. Two

parts of information are available in each subset about the beam:

 Head mnemonics (Single variables) describe the beam features:

SSTN CLAT CLON HSMSL HSALG ANEL ANAZ QCRW

YEAR MNTH DAYS HOUR MINU SECO

SCID HNQV VOCP VOID

 Arrays content the observation location (DIST125M), mean radial wind (DMVR), and

velocity spectral width (DVSW) along the beam

In our sample decoding file bufr_decode_l2rwbufr.f90, the above information of each beam

is read in beam by beam (subset by subset) until all the beams have been processed. If this

beam includes valid radial wind or velocity width observations, it will be saved to a binary

file: l2rwbufr.bin. We currently commented out most of the standard output information in

the file, but leave the final count on the total subsets that have valid observations.

Radar Data Assimilation

 84

9.1.2.2 Write Level II radar radial velocity observations to BUFR files

After familiar with the NCEP radar Level II radial wind BUFR file structure and content,

users can easily understand the sample encoding code bufr_encode_l2rwbufr.f90 in the

same directory. Based on this file, users can encode their own observations into a BUFR

file for GSI to do radial wind analysis.

The encoding shares the same mnemonics and structure as decoding. So, after run decode

sample, users can run encode sample to read in the radar observations from l2rwbufr.bin

and encode them into a new BUFR file called: l2rwbufr_new. Users may notice that the file

size of l2rwbufr_new is smaller than the size of l2rwbufr. This is because the l2rwbufr_new

only includes radial beam with valid observations while the l2rwbufr includes beams with

missing observations.

Another possible operation is to append some new radial wind observations to a exiting

NCEP Level II radial wind BUFR file. A little changes to the encoding sample will do the

job. Please refer to the BUFR user’s guide from DTC BUFR website for how to append the

observations.

Based on the NCEP radar data interface code, there are 4 variables, SCID HNQV VOCP

VOID, are in Level II BUFR file but not read in by GSI. Our sample codes keeps these 4

variables for reference only.

9.1.3 GSI interface to radar reflectivity

The GSI interface to radar reflectivity is different from the one to Level II radar radial wind

introduced above. Before GSI, the radar reflectivity observations in certain height level

have to be horizontally interpolated into analysis grid points and saved into a BUFR file

called “refInGSI”. Then the GSI reads in these reflectivity columns over each grid point

from the BUFR to feed the reflectivity into the GSD cloud analysis package to improve the

precipitation analysis and storm forecast.

9.1.3.1 Radar reflectivity preprocess code

The GSD has developed an application package to preprocess both the NSSL radar

reflectivity mosaics and the NCEP radar reflectivity mosaics for RAP GSI cloud analysis.

DTC simplified that package to only preprocess NSSL new 4 tiles MRMS mosaics in

binary format. We will use this simplified package as an example to illustrate how to

prepare radar reflectivity BUFR for the community GSI release version 3.2 and later.

The package is under “./util/radar_process/reflectivity”. It includes fortran code, a

namelist “mosaic.namelist” for running the code, and a BUFR table

“prepobs_prep.bufrtable” for encoding the reflectivity BUFR files. The fortran code can be

Radar Data Assimilation

 85

compiled with Intel compiler only with the makefile under the same directory. After

compile, an executable named as “process_NSSL_mosaic.exe” should show up in the same

directory.

There are three steps to set up running environment for this executable:

1. The sample code will read the NSSL new 4 tiles MRMS mosaics in binary format.

The 4 tiles should be renamed as:

mosaic_t1 mosaic_t2 mosaic_t3 mosaic_t4

The sample code can only process 4 tiles MRMS mosaics binary files available

from NSSL since summer 2013. The code for processing old 8 tiles mosaic netcdf

files is not included in this package.

2. Configure namelist file, mosaic.namelist:

&setup
 tversion=4,

 analysis_time = 2013111518,

 dataPath = '../data/',
 bkfile = '../data/wrfinput_d01',

 /

where tversion is always set to 4. The analysis_time have format

YYYYMMDDHH; the dataPath is the directory that includes 4 mosaic tiles

(mosaic_t1-4); the bkfile is the path and WRF background file used for GSI

analysis.

3. Run process_NSSL_mosaic.exe with 4 cores.

Please note the code has to be run by at least 4 cores because each tile needs one

core to process. The namelist (mosaic.namelist) and BUFR table file

(prepobs_prep.bufrtable) should be in the same directory as the executable.

After run, the radar reflectivity BUFR file named as “NSSLRefInGSI.bufr” should show up

in run directory.

9.1.3.2 Radar reflectivity interface: content and structure

In this package, the file “write_bufr_ref.f90” is to write reflectivity into the BUFR file.

From this file, we can learn the structure and content of the reflectivity BUFR file.

The radar reflectivity observations are written column by column. Each subset includes the

information from one column. In each subset, there are only 6 mnemonics:

Radar Data Assimilation

 86

The mnemonics and their meanings for radar reflectivity

mnemonic meaning dimension
SID RADAR STATION IDENTIFIER (not used in GSI) 1
XOB X-index for grid coordinate of reflectivity column 1
YOB Y-index for grid coordinate of reflectivity column 1
DHR OBSERVATION TIME MINUS CYCLE TIME (not

used in GSI)
1

TYP PREPBUFR REPORT TYPE (not used in GSI) 1
HREF Horizontal reflectivity 31

Only XOB, YOB, and HREF are used by GSI, if users can wire their only reflectivity

observations over analysis grid with columns that has vertical level list below (in km):

 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 2.75, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8,

8.5, 9, 10, 11, 12, 13, 14, 15, 16, 18

Then, users can use ““write_bufr_ref.f90” directory to encode BUFR file for GSI. If user’s

radar reflectivity column has different vertical levels, please contact DTC GSI help desk

for how to change the cloud analysis code for the new vertical levels.

9.1.3.3 Check the results

When generate the radar reflectivity BUFR file for GSI, the sample preprocess also write

out the composite reflectivity (compref.bin) based on reflectivity columns over the analysis

grid. This composite reflectivity can be used to check if the preprocess is process

reflectivity mosaic successfully.

In the release package under the reflectivity directory, we provide a NCL script,

plot_compositeRef.ncl, to help user plot the composite reflectivity. The result figure is

called compsiteRef.pdf and the figure from the sample data we provided on-line is shown

below.

Radar Data Assimilation

 87

Composite Reflectivity from the sample reflectivity preprocess, which is based on NSSL

MRMS reflectivity observations at 18Z, November 11, 2013

9.2 Analyze Radar Radial Velocity with GSI

After get the radar level II radial velocity BUFR file ready for GSI, users need to go

through the following steps to setup GSI radial velocity analysis.

1. Link the radial velocity BUFR file to GSI run directory in run scripts

GSI code has hardwired the BUFR file name for Level II radial velocity observations. So

the 1
st
 step to use the radial velocity is to add a link in the GSI run scripts to link the radial

velocity BUFR file to GSI working directory with this hardwired name:

ln –s “the patch and name of level II radial velocity BUFR file” l2rwbufr

GSI can also analyze the level-III and level-2.5 radar velocity, which is available for NAM

application for many years. When both Level-II and Level-III/2.5 available, level-II will be

used over the III/2.5, but outside the Level-II radar soverage, Level-III/2.5 will be used.

The Level-II/2.5 BUFR file can be linked through the following line in the runs scripts:

ln –s “the patch and name of level III/2.5 radial velocity BUFR file” radarbufr

Radar Data Assimilation

 88

2. Setup GSI namelist for radial velocity analysis

In GSI namelist, only level III/2.5 radial velocity need to be set as the following sample:

dfile(09)='radarbufr', dtype(09)='rw', dplat(09)=' ', dsis(09)='rw', dval(09)=1.0, dthin(09)=0, dsfcalc(09)=0,

To apply high-resolution radial velocity to regional GSI analysis, radar observations need

to be thinned with superobs method. This superobs method is controlled by the following

namelist section:

&SUPEROB_RADAR

del_azimuth=5.,del_elev=.25,del_range=5000.,del_time=.5,elev_

angle_max=5.,minnum=50,range_max=100000.,

 l2superob_only=.false.,

 /

Please check Appendix A for the detailed explanation of the options in the

SUPEROB_RADAR section.

3. Setup convinfo for radial velocity

As other conventional observations, GSI uses “convinfo” file to control the data usage of

each observation type. Please check GSI user’s guide for details of “convinfo”, here is an

example of the line to contral the radial velocity:

rw 999 0 1 2.5 0 0 0 10.0 10.0 2.0 10.0 0.000000 0 0. 0. 0

4. Check the radial velocity results

The fit of the analysis results to radial velocity is recorded in fort.209. We have introduced

how to check the fit (fort) files in the GSI User’s Guide. Here we suggest user to check

fort.209 file to get detailed information on bias, rms, and observation numbers for analysis.

9.3 Analyze Radar Reflectivity with GSI

After get the radar reflectivity BUFR file ready for GSI, users need to go through the

following steps to setup GSI reflectivity analysis.

1. Compile with GSD cloud analysis

Reflectivity observations are used with the GSI in GSD cloud analysis. To open the cloud

analysis in the GSI, users need to add the following bold conditional compiling option in

“configure.gsi” file:

Radar Data Assimilation

 89

CPP_FLAGS = -C -P -D_REAL8_ -DWRF –DLINUX -DRR_CLOUDANALYSIS

2. Setup GSI namelist for radial velocity analysis

In GSI namelist section “OBS_INPUT”, a line needs to be set to let GSI know the name of

the radar reflectivity:

 dfile(88)='refInGSI', dtype(88)='rad_ref', dplat(88)=' ', dsis(88)='rad_ref', dval(88)=1.0, dthin(88)=0, dsfcalc(88)=0,

Please note the total observation files number in namelist section SETUP need to be add 1:

ndat=original number + 1

The namelist options to control GSD cloud analysis, including the reflectivity analysis, are

in section RAPIDREFRESH_CLDSURF. Please check Appendix A for the detailed

explanation of the options in the RAPIDREFRESH_CLDSURF section.

3. Link the radial velocity BUFR file to GSI run directory in run scripts

After add GSI namelist for reflectivity, a new link need to be added in the GSI run scripts

to link the reflectivity BUFR file to GSI working directory with the name setup in the GSI

OBS_INPUT section:

ln –s “the patch and name of reflectivity BUFR file” refInGSI'

4. Setup convinfo for reflectivity

As other conventional observations and radial velocity, GSI uses “convinfo” file to control

the data usage of each observation type. Please check GSI user’s guide for details of

“convinfo”, here is an example of the line to contral the reflectivity:

rad_ref 999 0 1 1.5 0 0 0 7.0 5.6 1.3 10.0 0.000000 0 0. 0. 0

5. Setup anavinfo for reflectivity

Reflectivity is analyzed as part of the GSD cloud analysis. To open the GSD cloud

analysis, users also need to make the following changes to the met_guess section of the

anavinfo_arw_netcdf in fix files:

met_guess::

!var level crtm_use desc orig_name

 cw 30 10 cloud_condensate cw

 ql 30 10 cloud_liquid ql

 qi 30 10 cloud_ice qi

 qr 30 10 rain qr

 qs 30 10 snow qs

 qg 30 10 graupel qg

 qnr 30 10 rain_noconc qnr

::

Radar Data Assimilation

 90

6. Check the reflectivity analysis results

Because the reflectivity is not analzed with the variational method, there is no fit files for

the reflectivity. But users still can use the stdout file to find if the reflectivity is used in the

analysis.

 Check data distribution in stdout to look for line:

OBS_PARA: rad_ref ???? ???? ???? ????

 Check the line after minimization:

==

gsdcloudanalysis: Start generalized cloud analysis

==

 Check analysis increment for rain and snow mixing ratio

9.4 information on radar data quality control

Radar data quality control is not discussed in this document because of the complexity of

the problem. Users can check Shun Liu’s slides in the 2010 Summer Community GSI

residential Tutorial on radar data assimilation for quality control steps conducted in radial

velocity process.

GSI Application

 91

Chapter 10 GSI Applications

10.1 Introduction to Global GSI analysis

The Global Forecast System (GFS) is the NCEP operational numerical weather prediction

system, containing a global model and GSI. Its forecast system runs four times a day,

providing forecasts out to 16 days and its data assimilation system runs 6-hourly

continuious cycles using the GSI-hybrid.

GSI has many functions specially designed and tunned for GFS. Although the release

version of the community GSI includes all the functions used by the operational systems,

the DTC can only support the GSI regional applications because the DTC is not able to run

GFS on community computers. Beginning with release version 3.2, the DTC began to

introduce the use of GSI for global applications, assuming users can obtain the GFS

background through the NCEP data hub or by running GFS themselves.

10.1.1 The difference between GSI global and regional

As mentioned previously, all NCEP operational systems are using GSI as the analysis

system, but there is only one set of GSI code. The majority of the GSI code is shared by

these operational systems with only a small amount of code that is specific for a particular

operational system. The major differences among those operational systems in terms of

GSI applications are configuring the run scripts to set up the special run environment and

namelist parameters.

Different GSI applications need different backgrounds, observations, and fixed files. For

the GFS system, GSI needs:

 GFS Backgrounds: usually, GSI uses 6-h GFS forecasts as the background. GFS

3-h and 9-h forecasts are also needed for the FGAT function in the GSI

analysis. Both surface and atmosphere forecasts are needed.

 Observations: NCEP has several sets of BUFR/PrepBUFR observations files

with global coverage for global systems. The files that start with “GDAS” are

for the 6-hourly global data assimilation system, which has more data available

for the analysis but has to wait longer for use in real-time. The files that start

with “gfs” are for the GFS forecast 4 times a day. The different operational

systems need different observation data files because they require different

kinds of observations with different coverage, cut-off times, and quality control

processes. All these observation files are read in and processed in GSI by the

same code. Therefore, there is no problem using GFS observation data files for

regional GSI applications, as done in the practices examples using the

community GSI in the fundamental User’s Guide. Using regional BUFR files

GSI Application

 92

for global applications will cause scientific problems because the data only

covers part of the analysis domain, although GSI can still read in observations

and perform the analysis.

 Fixed files: In Section 3.1 of the fundamental User’s Guide, we introduced that

different operational systems have their own fixed files. For the GFS GSI

application, the big difference is the background error covariance (BE).

Different resolutions of the GFS backgrounds use their matched BE files, which

are different from the BE files used by the regional GSI applications. In this

release version, we provide two:

o global_berror.l64y386.f77

o global_berror.l64y96.f77

10.1.2 Global GFS scripts

In this release version, we begin to help community users to run GSI global applications

through a sample run script under directory ./run. The script run_gsi_global.ksh is set

based on GSI GFS regression tests. This script has a similar structure to the regional run

script run_gsi.ksh, but include a couple of different details.

The first two pieces of the run script head are to setup the computer environment and case

configuration, this part is the same as the regional runs.

The last piece of setup section is different from regional. Instead of selecting background

and BE files, the global needs to know the background resolution setup by the following

parameters.

if_clean = clean : delete temperal files in working directory (default)

no : leave running directory as is (this is for debug only)

 if_clean=clean

Set the JCAP resolution which you want.

All resolutions use LEVS=64

 JCAP=62

 LEVS=64

 JCAP_B=62

Similar to the regional run script, this global run script will also double check the needed

parameters. Then it creates a run directory and generates the namelist in the directory and

copies the background, observations, and fixed files into the run directory. Certainly, many

details are different between global and regional applications, which is shown in several

steps:

1. Several namelist parameters are setup different, the parameter to determine this is a

GFS run is:
regional=.false.

2. Multiple time level backgrounds are needed:

GSI Application

 93

cp $BK_ROOT/gdas${resol}.t${hhg}z.bf03 ./sfcf03

cp $BK_ROOT/gdas${resol}.t${hhg}z.bf06 ./sfcf06

cp $BK_ROOT/gdas${resol}.t${hhg}z.bf09 ./sfcf09

cp $BK_ROOT/gdas${resol}.t${hha}z.sgm3prep ./sigf03

cp $BK_ROOT/gdas${resol}.t${hha}z.sgesprep ./sigf06

cp $BK_ROOT/gdas${resol}.t${hha}z.sgp3prep ./sigf09

Both surface and atmosphere files at 03, 06, 09 hour forecasts are needed. In our

example data, these files are:

gdas1.t00z.sgesprep gdas1.t18z.bf03

gdas1.t00z.sgm3prep gdas1.t18z.bf06

gdas1.t00z.sgp3prep gdas1.t18z.bf09

3. More radiance observations files are available

In the sample run script, many more radiance observations are listed for use:

Link to the radiance data

suffix=tm00.bufr_d

ln -s ${OBS_ROOT}/gdas1.t00z.satwnd.${suffix} ./satwnd

ln -s ${OBS_ROOT}/gdas1.t00z.gpsro.${suffix} ./gpsrobufr

#ln -s ${OBS_ROOT}/gdas1.t00z.spssmi.${suffix} ./ssmirrbufr

ln -s ${OBS_ROOT}/gdas1.t00z.sptrmm.${suffix} ./tmirrbufr

ln -s ${OBS_ROOT}/gdas1.t00z.osbuv8.${suffix} ./sbuvbufr

##ln -s ${OBS_ROOT}/gdas1.t00z.goesfv.${suffix} ./gsnd1bufr

ln -s ${OBS_ROOT}/gdas1.t00z.1bamua.${suffix} ./amsuabufr

ln -s ${OBS_ROOT}/gdas1.t00z.1bamub.${suffix} ./amsubbufr

#ln -s ${OBS_ROOT}/gdas1.t00z.1bhrs2.${suffix} ./hirs2bufr

ln -s ${OBS_ROOT}/gdas1.t00z.1bhrs3.${suffix} ./hirs3bufr

ln -s ${OBS_ROOT}/gdas1.t00z.1bhrs4.${suffix} ./hirs4bufr

ln -s ${OBS_ROOT}/gdas1.t00z.1bmhs.${suffix} ./mhsbufr

#ln -s ${OBS_ROOT}/gdas1.t00z.1bmsu.${suffix} ./msubufr

##ln -s ${OBS_ROOT}/gdas1.t00z.airsev.${suffix} ./airsbufr

ln -s ${OBS_ROOT}/gdas1.t00z.sevcsr.${suffix} ./seviribufr

ln -s ${OBS_ROOT}/gdas1.t00z.mtiasi.${suffix} ./iasibufr

##ln -s ${OBS_ROOT}/gdas1.t00z.ssmit.${suffix} ./ssmitbufr

ln -s ${OBS_ROOT}/gdas1.t00z.amsre.${suffix} ./amsrebufr

##ln -s ${OBS_ROOT}/gdas1.t00z.ssmis.${suffix} ./ssmisbufr

ln -s ${OBS_ROOT}/gdas1.t00z.gome.${suffix} ./gomebufr

ln -s ${OBS_ROOT}/gdas1.t00z.omi.${suffix} ./omibufr

#ln -s ${OBS_ROOT}/gdas1.t00z.mlsbufr.${suffix} ./mlsbufr

ln -s ${OBS_ROOT}/gdas1.t00z.syndata.tcvitals.tm00 ./tcvitl

10.1.3 Sample resuls.

After a successful GSI GFS analysis, the run directory may look like (with the clean

option turned on):

amsrebufr diag_mhs_n18_anl.2011080100.gz fort.213

amsuabufr diag_mhs_n18_ges.2011080100.gz fort.214

amsubbufr diag_mhs_n19_anl.2011080100.gz fort.215

GSI Application

 94

anavinfo diag_mhs_n19_ges.2011080100.gz fort.217

atms_beamwidth.txt diag_omi_aura_anl.2011080100.gz fort.218

berror_stats diag_omi_aura_ges.2011080100.gz fort.219

bftab_sstphr diag_pcp_tmi_trmm_anl.2011080100.gz fort.220

convinfo diag_pcp_tmi_trmm_ges.2011080100.gz fort.221

diag_amsre_hig_aqua_anl.2011080100.gz diag_sbuv2_n16_anl.2011080100.gz gomebufr

diag_amsre_hig_aqua_ges.2011080100.gz diag_sbuv2_n16_ges.2011080100.gz gpsrobufr

diag_amsre_low_aqua_anl.2011080100.gz diag_sbuv2_n17_anl.2011080100.gz gsi.exe

diag_amsre_low_aqua_ges.2011080100.gz diag_sbuv2_n17_ges.2011080100.gz gsiparm.anl

diag_amsre_mid_aqua_anl.2011080100.gz diag_sbuv2_n18_anl.2011080100.gz hirs3bufr

diag_amsre_mid_aqua_ges.2011080100.gz diag_sbuv2_n18_ges.2011080100.gz hirs4bufr

diag_amsua_metop-a_anl.2011080100.gz diag_sbuv2_n19_anl.2011080100.gz mhsbufr

diag_amsua_metop-a_ges.2011080100.gz diag_sbuv2_n19_ges.2011080100.gz omibufr

diag_amsua_n15_anl.2011080100.gz diag_seviri_m09_anl.2011080100.gz ozinfo

diag_amsua_n15_ges.2011080100.gz diag_seviri_m09_ges.2011080100.gz pcpbias_out

diag_amsua_n18_anl.2011080100.gz errtable pcpinfo

diag_amsua_n18_ges.2011080100.gz fit_p1.2011080100 prepbufr

diag_amsua_n19_anl.2011080100.gz fit_q1.2011080100 prepobs_prep.bufrtable

diag_amsua_n19_ges.2011080100.gz fit_rad1.2011080100 satbias_angle

diag_amsub_n17_anl.2011080100.gz fit_t1.2011080100 satbias_in

diag_amsub_n17_ges.2011080100.gz fit_w1.2011080100 satbias_out

diag_conv_anl.2011080100.gz fort.201 satinfo

diag_conv_ges.2011080100.gz fort.202 satwnd

diag_gome_metop-a_anl.2011080100.gz fort.203 sbuvbufr

diag_gome_metop-a_ges.2011080100.gz fort.204 scaninfo

diag_hirs3_n17_anl.2011080100.gz fort.205 seviribufr

diag_hirs3_n17_ges.2011080100.gz fort.206 sfcanl.gsi

diag_hirs4_metop-a_anl.2011080100.gz fort.207 siganl

diag_hirs4_metop-a_ges.2011080100.gz fort.208 stdout

diag_hirs4_n19_anl.2011080100.gz fort.209 stdout.anl.2011080100

diag_hirs4_n19_ges.2011080100.gz fort.210 tcvitl

diag_mhs_metop-a_anl.2011080100.gz fort.211 tmirrbufr

diag_mhs_metop-a_ges.2011080100.gz fort.212

Most of these files are also shown in the GSI regional examples in section 3.5 (of the Basic

User’s Guide), which provide the same information about the GSI run. This global GSI run

includes more radiance observations. Therefore, there are more radiance diag files in this

list. The global analysis background is “signal” for atmosphere and “sfcanl.gsi” for surface

instead of only one “wrf_inout”. A quick check of the standard output file stdout will also

show information similar to what was shown in previous regional runs with respect to the

namelist, data ingest, minimization, but quite different with respect to background IO.

Please visit our online tutorial for the details of this global GSI run.

10.2 Introduction to RTMA analysis

The Real-Time Mesoscale Analysis (RTMA) is a NOAA/NCEP high-spatial and temporal

resolution analysis/assimilation system for near-surface weather conditions. Its main

component is the NCEP/EMC Gridpoint Statistical Interpolation (GSI) system applied in

two-dimensional variational mode to assimilate conventional and satellite-derived

observations. The RTMA produces analyses of 2-m temperature, 2-m specific humidity,

2m-dew point temperature, 10-m winds, 10-m wind gust, surface pressure, and surface

visibility.

The RTMA was developed to support the National Digital Forecast Database (NDFD)

operations and provide field forecasters with high quality analyses for nowcasting,

GSI Application

 95

situational awareness, and forecast verification purposes. Presently, the system produces

hourly, real-time analyses for the 5-km and 2. 5-km resolution CONUS NDFD grids, 6-km

Alaska NDFD grid and 2.5-km Hawaii, Puerto-Rico and Guam NDFD grids.

RTMA fields for the CONUS are displayed at:

http://mag.ncep.noaa.gov/

In this section, we will introduce how to run the RTMA system. The whole RTMA system

includes three components:

1. Prepare first guess file

2. Run GSI in RTMA mode

3. RTMA post-process

10.2.1. Prepare first guess file

The major function of the RTMA is to create a high- resolution 2D near surface analysis.

The background file of the RTMA GSI is an unformatted binary file that includes a set of 2

dimensional surface fields. There are no forecast files that can be directly used as its

background. For the community RTMA GSI, the background file can be generated using a

tool in the release community GSI package, which includes the code under directory

./util/RTMA/rtma_firstguess and a run script: ./ util/RTMA/ rtma_getguess.sh .

1. Compile the code

The code in the directory ./util/RTMA/rtma_firstguess will produce an executable for

generating RTMA GSI first guess (background). Because the dimension of the analysis

domain, and the needed navigational information (eg., longitude and latitude of the

southwestern most point and grid spacing for Lambert-Conformal grids) are hardwired in

the code, users need to edit the code for the specific domain:

1) get into directory ./util/RTMA/rtma_firstguess;

2) open file “param.incl” ;

3) find the following lines (starts from line 94):

!==>parameter definition for dtc

 integer(4),parameter::nx_dtc=758

 integer(4),parameter::ny_dtc=567

 real(8),parameter::alat1_dtc=21.138000_8

 real(8),parameter::elon1_dtc=237.280000_8

 real(8),parameter::da_dtc=13545.09_8

GSI Application

 96

4) modify the values to fit the user’s specific domain:

nx_dtc: analysis domain dimension in X direction

ny_dtc : analysis domain dimension in Y direction

alat1_dtc : analysis domain latitude of southwestern most point

elon1_dtc : analysis domain longitude of southwestern most point

da_dtc : analysis grid space in meters

After setting the right analysis grid configuration, edit the “makefile” inside the same

directory and put the right location of the GSI root directory in a line:

GSIDIR=comGSI/releaseV33/release_V3.3_intel.12-12.0

Please note that this tool has to be compiled after the compilation of the community GSI.

Users also need to pick the following part for PGI or Intel compiler:

For Intel compiler, pick:
FC=ifort

FFLAGS=-nofixed -convert big_endian

For PGI compiler, pick:
FC=pgf90

FFLAGS= -Mfree -byteswapio

Then, in the same directory, compile the code using the command:

./make

The successful compilation should give a new executable in the directory named:

rtma_firstguess.exe

If user needs to clean the code for recompilation, use command:

./make clean

2. Using run scripts to generate first guess for RTMA GSI

The generation of background (first guess) files for RTMA is controlled by the script

“rtma_getguess.sh” in directory “./util/RTMA”. Users need to setup the following

parameters for “rtma_getguess.sh”:

ROOTDIR= comGSI/releaseV33/release_V3.3_intel.12-12.0/util/RTMA

FGFILE= 2012052811/postprd/wrftwo_rr_01.grib1

work_dir=${ROOTDIR}/rtmagus

CYCLE=2012052811

GSI Application

 97

Where

 ROOTDIR: full directory for ./uitl/RTMA

 FGFILE: background file, which is a two-dimension grib file from uni-post.

 work_dir: work directory

 CYCLE: analysis time

This run script can be run in front node directly using:

./rtma_getguess.sh

In this script, command “wgrib” is used to extract the surface fields out from the 2D grib

file “wrftwo_rr_01.grib1” and save these fields into a file called “slabs.dat”. Then this file

and a binary file called “rtma_dtc_latlon_mpfactor_slmask.data” under directory

util/RTMA/fix are read in and processed. Finally, a set of 2D fields are written into a binary

file called “twodvar_input_bi” to be used as the RTMA background file.

Users should be aware that running a domain other than the Rapid Refresh (RAP) case in

the example may require additional modifications to be sure the appropriate surface fields

are present in the 2D grib file and the binary files are appropriate for the domain of interest.

See the following section (3. Binary file structure) for more information.

After running the script, the run directory (./RTMA/rtmagus) for first guess generation

should look like:

bigrjlist.txt mass_rjlist.txt_static slabs2_nobiasc.dat

cycledate parm_ndfd_time_namelist slabs.dat

first_guess.grib1 p_rejectlist stdout.rtma_getguess

fort.20 p_rjlist.txt_static t_rejectlist

fort.30 q_rejectlist t_rjlist.txt_static

fort.88 q_rjlist.txt_static twodvar_input_bi

fort.9 rtma_slmask.dat w_rejectlist

gridname_input rtma_terrain.dat w_rjlist.txt_static

mass_rejectlist slabs2.dat

The following is a list of important files in this run directory:

 first_guess.grib1: 2D grib file from uni-post

 slabs.dat: binary file including 2D fields extracted from first_guess.grib1 using

wgrib command.

 parm_ndfd_time_namelist: namelist holding analysis time

 gridname_input: namelist holding analysis grid configuration

 twodvar_input_bi: RTMA first guess, binary file.

 stdout.rtma_getguess: standard output

GSI Application

 98

3. Binary file structure

The binary file “rtma_dtc_latlon_mpfactor_slmask.data” is a fix file that includes map

factor, grid latitude, grid longitude, and land mask information from the goegrid file. They

are 2D real arrays arranged in the following order:

 mapfac(nx,ny)

 glat(nx,ny)

 glon(nx,ny)

 landmask(nx,ny)

Users have to generate “rtma_dtc_latlon_mpfactor_slmask.data” for their own analysis

domain and save this file in the same location.

If users want to write their own first guess generation code, they can find the content of the

binary file “twodvar_input_bi” from file “firstguess.f” by searching “write(88)”. Here is a

list of these lines. Please check the code for details of each line:

 write(88) ihdrbuf

 write(88) iyear,imonth,iday,ihour,iminute,isecond,nx,ny,nsig

 write(88) dx,dy

 write(88) glat

 write(88) glon

 write(88) psfcgrid ! psfc0

 write(88) phbgrid ! PHB (zsfc*g)

 write(88) tgrid ! T(k) ! TEMP (sensible)

 write(88) qgrid ! Q(k)

 write(88) ugrid ! U(K)

 write(88) vgrid ! V(K)

 write(88) landmask ! LANDMASK (0=water and >0.5 for land)

 write(88) field ! XICE

 write(88) sst ! SST

 write(88) ifield ! IVGTYP

 write(88) ifield ! ISLTYP

 write(88) field ! VEGFRA

 write(88) field ! SNOW

 write(88) ugrid ! U10

 write(88) vgrid ! V10

 write(88) field ! SMOIS

 write(88) tslb ! TSLB

 write(88) tsk ! TSK

 write(88) gust ! GUST

 write(88) vis ! VIS

 write(88) pblh ! PBLH

10.2.2. Run GSI RTMA analysis

The code for GSI RTMA analysis is the same as for other GSI applications, but with

different namelist options and environmental setups. In this release, a run script named

GSI Application

 99

“run_gsi_rtma.ksh” in directory “./util/RTMA” is provided to help users set up the RTMA

GSI run environments and namelist.

1. Code change for user specific domain

The GSI code also includes hardwired information on the analysis grid. Therefore, users

need to add analysis grid information to GSI code for their specific RTMA analysis. This is

done by editing the file “support_2dvar.f90” in src/main to change the following lines:

 elseif (trim(cgrid) == 'dtc') then

 nx=758

 ny=567

 alat18=21.138_r_kind

 elon18=237.280_r_kind

 da8=13545.09_r_kind

After adding this domain configuration, users can compile the GSI the same way as the

general community GSI (details see Chapter 2 of the fndamental User’s Guide).

2. Run script for RTMA

The sample script “./ util/RTMA/run_gsi_rtma.ksh” has a similar structure as the general

GSI run script “./run/run_gsi.ksh” and needs similar information to set up and run. Here,

we only introduce the settings that are different from those in the run_gsi.ksh. Please read

Chapter 3 of the fundamental User’s Guide for instruction on how to set up run_gsi.ksh.

BK_DIR=comGSI/releaseV33/util/RTMA/rtmagus

ROOTDIR= comGSI/releaseV33/util/RTMA

 BK_DIR = path of first guess generation directory

 ROOTDIR = RTMA root directory: ./util/RTMA

In RTMA GSI, there is no need to set up CRTM and satellite radiance related parameters

because RTMA doesn’t use satellite radiance observations.

There are two binary files holding geogrid information under: ${ROOTDIR}/fix:

 rtma_dtc_slmask.dat : Sea Land mask field

 rtma_dtc_terrain.dat : terrain of analysis domain

Users can easily generate these two files from geogrid files based on the following read in

code information from GSI:

 allocate(slmask(nx,ny))

 open (55,file='rtma_slmask.dat',form='unformatted')

 read(55) slmask

GSI Application

 100

 close(55)

 allocate(terrain(nx,ny))

 open (55,file='rtma_terrain.dat',form='unformatted')

 read(55) terrain

 close(55)

After setting up the run script, users can run the RTMA GSI using the same procedure as

that used for the general GSI. Please check Chapter 3 of the fundamental User’s Guide for

more details.

An important aspect to remember is that the RTMA GSI uses anisotropic recursive filters

to model the action of its background error covariances. Therefore, in run_gsi.ksh, the

namelist variable "anisotropic" under "&ANBKGERR" must be set to ".true." For this

tutorial, the background error covariances are mapped to the underlying terrain field to a

controlled degree (please see section 4
th

 part of this section for more details).

3. Sample results

The run directory of a successful GSI RTMA run with clean option turned on should look

like:

anavinfo fort.205 sm_theta.des

bckg_dxdy.dat fort.209 sm_z.dat

bckg_psfc.dat fort.210 sm_z.des

bckg_qsat.dat fort.211 stdout

bckgvar.dat_chi fort.212 stdout.anl.2012052811

bckgvar.dat_gust fort.213 sub_ps.dat

bckgvar.dat_ps fort.214 sub_ps.des

bckgvar.dat_pseudorh fort.215 sub_q.dat

bckgvar.dat_psi fort.218 sub_q.des

bckgvar.dat_t fort.219 sub_sf.dat

bckgvar.dat_vis fort.220 sub_sf.des

bckg_z.dat fort.221 sub_t.dat

berror_stats gsi.exe sub_t.des

convinfo gsiparm.anl sub_vp.dat

diag_conv_anl.2012052811 mesonet_stnuselist sub_vp.des

diag_conv_ges.2012052811 mesonetuselist theta.dat

errtable parmcard_input theta.des

fit_p1.2012052811 p_rejectlist t_rejectlist

fit_q1.2012052811 prepbufr w_rejectlist

fit_t1.2012052811 prepobs_prep.bufrtable wrfanl.2012052811

fit_w1.2012052811 q_rejectlist wrf_inou2

fltnorm.dat_chi random_flips wrf_inou3

fltnorm.dat_gust rtma_slmask.dat wrf_inou4

fltnorm.dat_ps rtma_terrain.dat wrf_inou5

fltnorm.dat_pseudorh shoreline_obrelocation.dat_000 wrf_inou6

fltnorm.dat_psi shoreline_obrelocation.dat_001 wrf_inou7

fltnorm.dat_t shoreline_obrelocation.dat_002 wrf_inou8

fltnorm.dat_vis shoreline_obrelocation.dat_003 wrf_inou9

fort.201 shoreline_obrelocation.dat_004 wrf_inout

fort.202 shoreline_obrelocation.dat_005 z.dat

fort.203 sigfupdate02 z.des

GSI Application

 101

fort.204 sm_theta.dat

Some files, such as fort.* file (fit files), diag files, stdout, and wrf_inout, are similar to

those from the general GSI analysis. Others are specific to the RTMA. Here we introduce

some of these specific RTMA files:

wrf_inou2, …, wrf_inou9 are empty and used only when the so-called FGAT

option is turned on. FGAT stands for “First guess at the Appropriate Time”. It’s a

technique that uses auxiliary first guess files with distinct valid times to improve the

time interpolation in the GSI.

random_flips is an input file storing random numbers. It is needed to generate the

anisotropic background error covariances.

bckgvar_* contain the square-root of the background error covariances for the

various analysis variables. They are used in the RTMA post to aid with the

evaluation of the analysis error.

4. Namelist for RTMA

RTMA GSI uses the same namelist as the general GSI, and one additional namelist file:

parmcard_input

The namelist parameters in parmcard_input are as follows:

 afact0=1 activates the anisotropic component of the background error covariance

model. Use afact0=0 instead to have the anisotropic recursive filter simulate an

isotropic analysis.

 hsteep=500.: sets an artificial elevation difference of 500m between land and

water along the coastlines. The resulting escarpment in the terrain-following

covariances serves to confine the influence of the land (water) observations to the

land (water) bodies.

 lsmoothterrain=.true. : induces a smoothing of the terrain field before the

background error covariances are computed

 hsmooth_len=1.0 : is the correlation length in grid units used to smooth the

terrain field.

 rltop_wind : is the function correlation length for streamfunction and velocity

potential, and rltop_temp, rltop_q, rltop_psfc, rltop_gust, and

rltop_vis are those for temperature, specific humidity, surface pressure, wind

GSI Application

 102

gust, and visibility, respectively. Smaller (larger) values of the function correlation

lengths lead to stronger (weaker) anisotropies.

 svpsi, svchi, svpsfc, svtemp, and svshum are used to adjust the

background error variances for streamfunction, velocity potential, surface pressure,

temperture, and specific humidity, respectively.

 sclpsi, sclchi, sclpsfc, scltemp, sclhum, sclgust, and sclvis

are used to adjust the spatial correlation lengths for streamfunction, velocity

potential, surface pressure, temperature, specific humidity, wind gust, and visibility,

respectively.

10.2.3. post-process

The analysis result from GSI RTMA is a binary file. It needs to be post-processed to

generate GRIB files for easy use. In addition to format conversion, the RTMA post-process

also:

 computes an estimate of the analysis error by finding a representation of the inverse

of the Hessian matrix of the 2DVar. The analysis error is also made available in

GRIB format.

 reads in from the original unformatted gsi observation stats files and writes out

formatted, streamlined versions for each observation type.

1. Compile the code

The RTMA post-process code is in directory ./util/RTMA/rtma_post. Just as with the other

components of the RTMA code, the dimensions of the analysis domain, analysis grid

spacing, and lat/lon information for the southwestern most point are hardwired in the code.

Users need to edit the code for the specific domain:

1) get into directory ./util/RTMA/rtma_post;

2) open file “param.incl” ;

3) find the following lines (starts from line 94):

!==>parameter definition for dtc

 integer(4),parameter::nx_dtc=758

 integer(4),parameter::ny_dtc=567

 real(8),parameter::alat1_dtc=47.49000_8

 real(8),parameter::elon1_dtc=256.000000_8

 real(8),parameter::da_dtc=13545.09_8

 real(8),parameter::elonv_dtc=256.000000_8

 real(8),parameter::alatan_dtc=47.490000_8

GSI Application

 103

4) modify the values to fit the user’s specific domain. For this tutorial, the (Conic
Lambert Conformal) navigation parameters are:

nx_dtc: analysis domain dimension in X direction

ny_dtc : analysis domain dimension in Y direction

alat1_dtc : analysis domain latitude of point (1,1)

elon1_dtc : analysis domain longitude of point (1,1)

da_dtc : analysis grid spacing in meters

elonv_dtc: Y-axis is parallel to longitude circle at this longitude

alatan_dtc: Latitude at which the projection intersects the earth

5) open file “post.f90” and edit the following two lines

line 955 if (trim(cgrid)=='dtc') xn=sin(47.49*dg2rad)

line 964 if (trim(cgrid)=='dtc') elonv=256.0

Here, elonv is the same as elonv_dtc, and xn is sin(alatan_dtc *dg2rad).

After setting the right analysis grid configuration, edit the “makfile” inside the same

directory and put the right location of the UPP root directory in a line:

UPPDIR= /glade/p/work/mhu/UPP/UPPV2.1

Please note that this tool has to be compiled after the compilation of the community UPP

because this application needs some UPP libraries.

The location of libraries for grib2 compression also needs to be set in the following line:

SRCDIRLIB= /glade/u/home/duda/grib2/lib

Please note the that makefile only works for Intel compiler for now.

Then, in the same directory, compile the code using the command:

./make all

The successful compilation should give a new executable in the directory named:

rtma_post.exe

If user needs to clean the code for recompilation, use command:

./make clean

2. Run scripts

GSI Application

 104

The running of the RTMA post process is not straightforward. There are many files from

first guess generation, RTMA GSI, and fix directory that need to be copied or linked to the

run directory. Here, we provide a sample script “./ util/RTMA/rtma_post.sh” to help users

run the RTMA post process.

As with all other MPI job scripts, a job control head needs to be at the top of the run script

to ask for computer resources to run MPI job. This part can be set in the same way as

run_gsi.ksh (check Chapter 3 of the Basic User’s Guide for more details). Then, the

parameters in following section need to be set:

ROOTDIR=/glade/p/work/mhu/gsi/rtma/rtma/RTMA

work_dir=/glade/p/work/mhu/gsi/rtma/rtma/RTMA/rpostprd

fixparm=${ROOTDIR}/fix

rtmagsidir=$ROOTDIR/rtmaprd

rtmafgdir=$ROOTDIR/rtmagus

CYCLE=2012052811

RUN_COMMAND="mpirun.lsf"

Where:

 ROOTDIR = RTMA root directory: (util/RTMA)

 work_dir = working directory for RTMA post

 fixparm = path of RTMA local directory ./fix

 rtmagsidir = run directory of RTMA GSI

 rtmafgdir = run directory of first guess generation directory

 CYCLE = analysis time in YYYYMMDDHH

 RUN_COMMAND = setup MPI run command based on job control system. This is

the same as the GSI run command.

After setting up the run script, users can run the RTMA post using the same procedure used

for the general GSI. Please check Chapter 3 of the fundamental User’s Guide for more

details.

3 Results

Although there are many files in the RTMA post run directory, the ones that are most

relevant to users are the following:

 anlerr.grib2, anl.grib2, bckg.grib2: analysis error, analysis, and background in

GRIB2 fromat.

 t_obs.*, u_obs.*, v_obs.*, q_obs.*, ps_obs.*, spd_obs.*, vis_obs.*, gust_obs.* :

lists of observation statistics for each outer loop. Specifically, files carrying the

string “iter_01” and “iter_02” display observation statistics for the beginning of the

first outer-loop and second outer-loop, respectively. Files carrying the string

“iter_anl” contain observation statistics valid at the end of the analysis.

GSI Application

 105

10.2.4. Notes on this RTMA section

In this section, we only briefly introduce how to compile and run each component of the

RTMA. This information and code should help users build an initial RTMA system for

their own grid configuration. We did not touch some of the other features that the RTMA

possesses, such as:

1) Running the RTMA with FGAT activated

2) Using bias correction for the background fields

3) Using the Hilbert-Curve based Cross-validation capability

10.3 GSI hybrid

10.4 GSI 4DVAR and FSO

10.5 GSI Chem

References

 106

References

1. Wan-Shu Wu, R. James Purser, and David F. Parrish, 2002: Three-Dimensional

Variational Analysis with Spatially Inhomogeneous Covariances. Monthly Weather

Review, 130, 2905–2916.

2. R. James Purser, Wan-Shu Wu, David F. Parrish, and Nigel M. Roberts, 2003:

Numerical Aspects of the Application of Recursive Filters to Variational Statistical

Analysis. Part I: Spatially Homogeneous and Isotropic Gaussian Covariances.

Monthly Weather Review, 131, 1524–1535.

3. R. James Purser, Wan-Shu Wu, David F. Parrish, and Nigel M. Roberts, 2003:

Numerical Aspects of the Application of Recursive Filters to Variational Statistical

Analysis. Part II: Spatially Inhomogeneous and Anisotropic General Covariances.

Monthly Weather Review, 131, 1536–1548.

4. David F. Parrish and John C. Derber, 1992: The National Meteorological Center's

Spectral Statistical-Interpolation Analysis System. Monthly Weather Review, 120,

1747–1763.

5. R. James Purser, 2005: Recursive Filter Basics. 1
st
 GSI User Orientation. 4

th
-5

th

January 2005. Camp Springs, MD

6. Russ Treadon, 2005: GSI Compilation, Coding, and Updates. 1
st
 GSI User

Orientation. 4
th

-5
th

 January 2005. Camp Springs, MD

7. John Derber, 2005: minimization and Preconditioning. 1
st
 GSI User Orientation. 4

th
-

5
th

 January 2005. Camp Springs, MD

8. Wu, Wan-Shu, 2005: Background error for NCEP’s GSI analysis in regional mode.

Fourth WMO International Symposium on Assimilation of Observations in

Meteorology and Oceanography, 18-22 April 2005, Prague, Czech Republic

9. Seung-Jae Lee, David F. Parrish, and Wan-Shu Wu, 2005: Near-Surface Data

Assimilation in the NCEP Gridpoint Statistical Interpolation System: Use of Land

Temperature Data and a Comprehensive Forward Model. NOAA/NCEP Office Note

446, 46 pp

GSI Namelist

 107

Appendix A: GSI Namelist: Name, Default value, Explanation

The following are lists and explanations of the GSI namelist variables. You can also find

them in the source code gsimod.F90.

Variable name Default value Description

&SETUP General control namelist

gencode 80 source generation code

factqmin 1 weighting factor for negative moisture

constraint

factqmax 1 weighting factor for supersaturated moisture

constraint

clip_supersaturation .false. flag to remove supersaturation during each

outer loop

factv 1 weighting factor for negative visibility

constraint

deltim 1200 model timestep

dtphys 3600 physics timestep

biascor -1 background error bias correction coefficient

bcoption 1 0=ibc (no bias correction to bkg);

1= sbc(original implementation)

diurnalbc 0 1= diurnal bias; 0= persistent bias

ndat 100 number of observations datasets

niter(0:50) 0, … Maximum number of inner loop iterations for

each outer loop

niter_no_qc

(0:50)

1000000 Inner loop iteration at which to turn on

variational quality control

miter 1 number of outer loops

qoption 1 option for moisture analysis variable; 1:q/qsatg

2:normalized RH

nhr_assimilation 6 assimilation time interval (currently 6 hours for

global, 3 hours for regional)

min_offset 3 time of analysis in assimilation window

iout_iter 220 output file number for iteration information

npredp 6 number of predictors for precipitation bias

correction

GSI Namelist

 108

retrieval .false. logical to turn off or on the SST physical

retrieval

nst_gsi 0 indicator to control the Tr Analysis mode:

0 = no nst info ingsi at all;

1 = input nst info, but used for monitoring only

2 = input nst info, and used in CRTM

simulation, but no Tr analysis

3 = input nst info, and used in CRTM

simulation and Tr analysis is on

nst_tzr 0 indicator to control the Tzr_QC mode:

0 = no Tz retrieval;

1 = Do Tz retrieval and applied to QC

nstinfo 0 number of nst variables

fac_dtl 0 index to apply diurnal thermocline layer or

not: 0 = no; 1 = yes

fac_tsl 0 index to apply thermal skin layer or not: 0 = no;

1 = yes.

tzr_bufrsave .false. logical to turn off or on the bufr Tz retrieval

file true=on

diag_rad .true. logical to turn off or on the diagnostic radiance

file (true=on)

diag_pcp .true. logical to turn off or on the diagnostic

precipitation file (true=on)

diag_conv .true. logical to turn off or on the diagnostic

conventional file (true=on)

diag_ozone .true. logical to turn off or on the diagnostic ozone

file (true=on)

diag_aero .false. logical to turn off or on the diagnostic aerosol

file (true=on)

diag_co .false. logical to turn off or on the diagnostic carbon

monoxide file (true=on)

iguess 1 flag for guess solution (currently not working)

-1 do not use guess file

0 write only guess file

1 read and write guess file

2 read only guess file

write_diag .false., … logical to write out diagnostic files for outer

iteration

reduce_diag .false. namelist logical to produce reduced radiance

diagnostic files

GSI Namelist

 109

oneobtest .false. one observation test flag true=on

sfcmodel .false. if true, then use boundary layer forward model

for surface temperature data.

dtbduv_on .true. logical for switching on (.true.) sensitivity of uv

winds to microwave brightness temperatures

if true, use d(microwave brightness

temperature)/d(uv wind) in inner loop

ifact10 0 flag for recomputing 10m wind factor
= 1 compute using GFS surface physics

= 2 compute using MM5 surface physics

= 0 or any other value - DO NOT recompute - use

value from guess file

l_foto .false. option for First-Order Time extrapolation to

observation

offtime_data .false. if true, then allow use of obs files with ref time

different from analysis time. default value =

.false., in which case analysis fails if

observation file reference time is different from

analysis time.

npred_conv_max 0 maximum number of conventional observation

bias correction coefficients

id_bias_ps 0 prepbufr id to have conv_bias added for testing

id_bias_t 0 prepbufr id to have conv_bias added for testing

id_bias_spd 120 prepbufr id to have conv_bias added for testing

conv_bias_ps 0 magnitude of ps bias(mb)

conv_bias_t 0 magnitude of t bias(deg K)

conv_bias_spd 0 magnitude of spd bias(m/sec)

stndev_conv_ps 1.0

stndev_conv_t 1.0

stndev_conv_spd 1.0

use_pbl .false. Logical flag to include PBL effects in tendency

model.

use_compress .false. option to turn on the use of compressibility

factors in geopotential heights

nsig_ext 13 number of layers above the model top which

are necessary to compute the bending angle for

gpsro

gpstop 30.0 maximum height for gpsro data assimilation.

Reject anything above this height. (km)

perturb_obs .false. logical flag to perturb observation (true=on)

GSI Namelist

 110

perturb_fact 1 magnitude factor for observation perturbation

oberror_tune .false. logical to tune (=true) oberror

preserve_restart

_date

.false. if true, then do not update regional restart file

date.

crtm_coeffs_path ./ path of directory w/ CRTM coeffs files

berror_stats berror_stats filename if other than "berror_stats"

newpc4pred .false. option for additional preconditioning for pred

coeff

adp_anglebc .false. option to perform variational angle bias

correction

angord 0 order of polynomial for variational angle bias

correction

passive_bc .false. option to turn on bias correction for passive

(monitored) channels

use_edges .true. option to exclude radiance data on scan edges

biaspredvar 0.1 set background error variance for radiance bias

coeffs

lobsdiagsave .false. write out additional observation diagnostics

l4dvar .false. turn 4D-Var on/off (default=off=3D-Var)

lbicg .false. use B-precond w/ bi-conjugate gradient for

minimization

lsqrtb .false. Use sqrt(B) preconditioning

lcongrad .false. Use conjugate gradient/Lanczos minimizer

lbfgsmin .false. Use L-BFGS minimizer

ltlint .false. Use TL inner loop (ie TL intall)

nhr_obsbin -1 length of observation bins

nhr_subwin -1 length of weak constraint 4d-Var sub-window

intervals

nwrvecs -1 Number of precond vectors (Lanczos) or pairs

of vectors (QN) being saved

iorthomax 0 max number of vectors used for

orthogonalization of various CG options

ladtest .false. Run adjoint test

ladtest_obs .false. if true, doing the adjoint check for the

observation operators

lgrtest .false. Run gradient test

GSI Namelist

 111

lobskeep .false. keep obs from first outer loop for subsequent

OL

lsensrecompute .false. does adjoint by recomputing forward solution

jsiga -1 calculate approximate analysis errors from

lanczos for jiter=jsiga

ltcost .false. calculate true cost when using Lanczos (this is

very expensive)

lobsensfc .false. compute forecast sensitivity to observations

lobsensjb .false. compute Jb sensitivity to observations

lobsensincr .false. compute increment sensitivity to observations

lobsensadj .false. use adjoint of approx. Hessian to compute obs

sensitivity

lobsensmin .false. use minimisation to compute obs sensitivity

iobsconv 0 compute convergence test in observation space

=1 at final point, =2 at every iteration

idmodel .false. uses identity model when running 4D-Var (test

purposes)

iwrtinc .false. when .t., writes out increments instead of

analysis

jiterstart 1 first outloop iteration number

jiterend 1 last outloop iteration number

lobserver .false. when .t., calculate departure vectors only

lanczosave .false. save lanczos vectors for forecast sensitivity

computation

llancdone .false. use to tell adjoint that Lanczos vecs have been

pre-computed

lferrscale .false. Something related to forecast error

print_diag_pcg .false. logical turn on of printing of GMAO

diagnostics in pcgsoi.f90

tsensible .false. option to use sensible temperature as the

analysis variable. Works only for

twodvar_regional=.true.

lgschmidt .false. option for re-biorthogonalization of the {gradx}

and {grady} set from pcgsoi when

twodvar_regional=.true.

lread_obs_save .false. option to write out collective obs selection info

lread_obs_skip .false. option to read in collective obs selection info

GSI Namelist

 112

use_gfs_ozone .false. option to read in gfs ozone and interpolate to

regional model domain

check_gfs_ozone_date .false. option to date check gfs ozone before

interpolating to regional model domain

regional_ozone .false. option to turn on ozone in regional analysis

lwrite_predterms .false. option to write out actual predictor terms

instead of predicted bias to the radiance

diagnostic files

lwrite_peakwt .false. option to writ out the approximate pressure of

the peak of the weighting function for satellite

data to the radiance diagnostic files

use_gfs_nemsio .false. option to use nemsio to read global model

NEMS/GFS first guess

liauon .false. treat 4dvar CV as tendency perturbation

(default=false)

use_prepb_satwnd .false. allow using satwnd's from prepbufr (historical)

file

l4densvar .false. logical to turn on ensemble 4dvar

ens4d_nstarthr 3 start hour for ensemble perturbations (generally

should match min_offset)

use_gfs_stratosphere When true, a guess gfs valid at the same time as

the nems-nmmb guess is used to replace the

upper levels with gfs values. The purpose of

this is to allow direct use of gdas derived sat

radiance bias correction coefs.

pblend0 152 The nems-nmmb vertical coordinate is

smoothly merged with gfs above this level.

Below this level, is original nems-nmmb.

pblend1 79.0 The nems-nmmb vertical coordinate is

smoothly merged with gfs below this level.

Above this level,is gfs.

step_start 1.e-4 initial stepsize in minimization

diag_precon .false. if true do preconditioning

lrun_subdirs .false. logical to toggle use of subdirectires at runtime

for pe specific files

emiss_bc .false. option to turn on emissivity bias predictor

upd_pred 1 bias update indicator for radiance bias

correction; 1.0=bias correction coefficients

evolve

use_reflectivity .false. option of using reflectivity

NOTE: for now, if in regional mode, then iguess=-1 is forced internally.

GSI Namelist

 113

& GRIDOPTS Grid setup variables, including regional

specific variables

jcap 62 spectral resolution of the analysis

jcap_b 62 spectral resolution of background (model guess field)

nsig 42 number of sigma levels

nlat 96 number of latitudes

nlon 384 number of longitudes

nlat_regional 0 Number of y grid point in whole regional domain

nlon_regional 0 Number of x grid point in whole regional domain

diagnostic_reg .false. logical for regional debugging

update_regsfc .false. logical to write out updated surface fields to the

regional analysis file (default = false)

netcdf .false. if true, then wrf files are in netcdf format,

otherwise wrf files are in binary format.

regional .false. logical for regional GSI run

wrf_nmm_regional .false. logical for input from WRF NMM

nems_nmmb_regional .false. logical for input from NEMS NMMB

wrf_mass_regional .false. logical for input from WRF MASS-CORE (ARW)

twodvar_regional .false. logical for regional 2d-var analysis

filled_grid .false. logical to fill in points on WRF-NMM E-grid

half_grid .false. logical to use every other row of WRF-NMM E-Grid

nvege_type 24 number of types of vegetation; old=24, IGBP=20

nlayers(100) 1 number of sub-layers to break indicated model layer

into prior to calling radiative transfer model

cmaq_regional .false. Background input is from CMAQ model

nmmb_reference_grid H ='H', then analysis grid covers H grid domain

= 'V', then analysis grid covers V grid domain

grid_ratio_nmmb sqrt(2) ratio of analysis grid to nmmb model grid in nmmb

model grid units.

grid_ratio_wrfmass 1.0 ratio of analysis grid to wrf mass grid in wrf grid

units

&BKGERR Background error related variables

GSI Namelist

 114

vs 1/1.5 scale factor for vertical correlation lengths for

background error

nhscrf 3 number of horizontal scales for recursive filter

hzscl(3) 1, 1, 1 scale factor for horizontal smoothing, n=1,number of

scales (3 for now)

specifies factor by which to reduce horizontal scales

(i.e. 2 would then apply 1/2 of the horizontal scale)

hswgt(3) 1/3, 1/3, 1/3 empirical weights to apply to each horizontal scale

norh 2 order of interpolation in smoothing

ndeg 4 degree of smoothing in recursive filters

noq 3 1/4 of accuracy in compact finite differencing

bw 0 factor in background error calculation

norsp 0 order of interpolation for smooth polar cascade routine

default is norsp=0, in which case norh is used with

original polar cascade interpolation (global only).

fstat .false. logical to separate f from balance projection

pert_berr .false. logical to turn on random inflation/deflation of

background error tuning parameters

pert_berr_fct 0 factor for increasing/decreasing berror parameters, this

is multiplied by random number

bkgv_flowdep .false. flag to turn on flow dependence to background error

variances
bkgv_rewgtfct 0 factor used to perform flow dependent reweighting of

error variances

bkgv_write .false. flag to turn on=.true. /off=.false. generation of binary

file with reweighted variances

fpsproj .true. controls full nsig projection to surface pressure

&ANBKGERR Anisotropic background error related

variables

anisotropic .false. if true, then use anisotropic background error

covariance

ancovmdl 0 covariance model settings - 0: pt-based, 1: ensemble

based

triad4 .true. for 2d variables, if true, use blended triad algorithm

ifilt_ord 4 filter order for anisotropic filters

npass 1 2×npass = number of factors in background error

GSI Namelist

 115

normal 200 number of random vectors to use for filter

normalization (if < 0 then slightly slower, but results

independent of number of processors)

binom .true. if true, weight correlation lengths of factors using

binomial distribution, with shortest scales on outside,

longest scales on inside. This can help to produce

smoother correlations in the presence of strong

anisotropy

ngauss 3 number of Gaussians to add together in each factor

rgauss 0 multipliers on reference aspect tensor for each

Gaussian factor

anhswgt 1.0 empirical weights to apply to each gaussian

an_vs 1 scale factor for background error vertical scales

(temporary carry over from isotropic inhomogeneous

option)

grid_ratio 2.0 ratio of coarse to fine grid in fine grid units

grid_ratio_p 0 ratio of coarse to fine grid in fine grid units for polar

patches

nord_f2a 4 order of interpolation for transfer operators between

filter grid and analysis grid

an_flen_u 1 coupling parameter for connecting horizontal wind to

background error

an_flen_t 1 coupling parameter for connecting grad(potential

temperature) to background error

an_flen_z 1 coupling parameter for connecting grad(terrain) to

background error

rtma_subdomain

_option

.false. if true, then call alternative code which calls recursive

filter directly from subdomain mode, bypassing

transition to/from horizontal slabs. This is mainly to

improve efficiency for 2d rtma analysis. at the

moment, this only works for twodvar_regional=.true.

rtma_subdomain_option will be forced to false when

twodvar_regional=.false.

lreadnorm .false. if true, then read normalization from fixed files

nsmooth 0 number of 1-2-1 smoothing passes before and after

background error application

nsmooth_shapiro 0 number of 2nd moment preserving (shapiro)

smoothing passes before and after background error

application.

NOTE: default for nsmooth and nsmooth_shapiro is 0.

if both are > 0, then nsmooth will be forced to zero.

GSI Namelist

 116

afact0 0.0 anistropy effect parameter, the range must be in 0.0-

1.0.

covmap .false. if true, covariance map would be drawn

&JCOPTS Constraint term in cost function (Jc)

ljcdfi .false. if .false., uses original formulation based on wind, temp,

and ps tends

when .t. uses digital filter initialization of increments

(4dvar)
alphajc 10.0 parameter for digital filter

switch_on_

derivatives
.false., … if true, then compute horizontal derivatives of all state

variables (to be used eventually for time derivatives,

dynamic constraints and observation forward models that

need horizontal derivatives)
tendsflag .false. if true, compute time tendencies

ljcpdry .false. when .t. uses dry pressure constraint on increment

bamp_jcpdry 0.0 parameter for pdry_jc

eps_eer -1.0 Errico-Ehrendofer parameter for q-term in energy norm

ljc4tlevs .false. when true and in 4D mode, apply any weak constraints

over all time levels instead of just at a single time

&STRONGOPTS Strong dynamic constraint

reg_tlnmc_type 1 =1 for 1st version of regional strong constraint

=2 for 2nd version of regional strong constraint
tlnmc_option 0 integer flag for strong constraint (various capabilities

for hybrid):

=0: no TLNMC

=1: TLNMC for 3DVAR mode

=2: TLNMC on total increment for single time level

only (for 3D EnVar) or if 4D EnVar mode, TLNMC

applied to increment in center of window

=3: TLNMC on total increment over all time levels (if

in 4D EnVar mode)

=4: TLNMC on static contribution to increment ONLY

for any EnVar mode

nstrong 0 if > 0, then number of iterations of implicit normal

mode initialization to apply for each inner loop

iteration

period_max 1000000.0 cutoff period for gravity waves included in implicit

normal mode initialization (units = hours)

GSI Namelist

 117

period_width 1.0 defines width of transition zone from included to

excluded gravity waves

nvmodes_keep 0 number of vertical modes to use in implicit normal

mode initialization

baldiag_full .false. flag to toggle balance diagnostics for the full fields

baldiag_inc .false. flag to toggle balance diagnostics for the analysis

increment

&OBSQC Observation quality control variables

 Parameters used for gross error checks are set in file convinfo (ermin, ermax, ratio)

 Parameters below used for nonlinear (variational) quality control

dfact 0 factor for duplicate observation at same location for

conventional data

dfact1 3.0 time factor for duplicate observation at same location

for conventional data

erradar_inflate 1 radar error inflation factor

tdrerr_inflate .false. logical for tdr obs error inflation

tdrgross_fact 1 factor applied to tdr gross error

oberrflg .false. logical for reading in new observation error table (if set

to true)

vadfile 'none' character(10) variable holding name of VAD wind bufr

file

noiqc .false logical flag to bypass OI QC (if set to true)

c_varqc 1 constant number to control variance qc turning on speed

blacklst .false. logical for reading in raob blacklist (if set to true)

use_poq7 .false. Logical to toggle accept (.true.) or reject (.false.)

SBUV/2 ozone observations flagged with profile ozone

quality mark

hilbert_curve .false. option for hilbert-curve based cross-validation. works

only with twodvar_regional=.true.

tcp_refps 1000.0 reference pressure for tcps oberr calculation (mb)

tcp_width 50.0 parameter for tcps oberr inflation (width, mb)

tcp_ermin 0.75 parameter for tcps oberr inflation (minimum oberr, mb)

tcp_ermax 5.0 parameter for tcps oberr inflation (maximum oberr, mb)

qc_noirjaco3 .false. controls whether to use O3 Jac from IR instruments

GSI Namelist

 118

qc_noirjaco3_pole .false. controls wheter to use O3 Jac from IR instruments near

poles

aircraft_t_bc_pof .false. logical for aircraft temperature bias correction, pof

is used for predictor

aircraft_t_bc .false. logical for aircraft temperature bias correction

biaspredt 1 berror var for temperature bias correction coefficients

upd_aircraft .true. indicator if update bias at 06Z & 18Z

cleanup_tail .false. logical to remove tail number no longer used

& OBS_INPUT Controls input data

dfile(ndatmax) ‘ ‘ input observation file name

dtype(ndatmax) ‘ ‘ observation type

dplat(ndatmax) ‘ ‘ satellite (platform) id (for satellite data)

dsis(ndatmax) ‘ ‘ sensor/instrument/satellite flag from satinfo files

dthin(ndatmax) 1 satellite group

dval(ndatmax) 1.0 relative value of each profile within group relative

weight for observation = dval/sum(dval) within grid

box

dmesh(ndatmax) 1.0 thinning mesh for each group

mesh size (km) for radiance thinning grid (used in

satthin)

dsfcalc(10) 0,0,… specifies method to determine surface fields within a

FOV. when equal to one, integrate model fields over

FOV. when not one, bilinearly interpolate model fields

to FOV center.

time_window

(ndatmax)

time_window

_max
time window for each input data file

time_window_max 3 upper limit on time window for all input data

ext_sonde .false. logical for extended forward model on sonde data

l_foreaft_thin .false. separate TDR fore/aft scan for thinning

NOTE: current value for ndatmax is 200.

&SINGLEOB_TEST Single observation test case setup

maginnov 1 magnitude of innovation for one observation

magoberr 1 magnitude of observational error

GSI Namelist

 119

oneob_type ‘ ‘ observation type (t, u, v, etc.)

oblat 0 observation latitude

oblon 0 observation longitude

obpres 1000.0 observation pressure (hPa)

obdattim 2000010100 observation date (YYYYMMDDHH)

obhourset 0 observation delta time from analysis time

pctswitch .false. if .true. innovation & oberr are relative (%) of

background value (level ozone only)

SUPEROB_RADAR Level 2 bufr file to radar wind superobs

del_azimuth 5.0 azimuth range for superob box (default 5 degrees)

del_elev 0.25 elevation angle range for superob box (default .05

degrees)

del_range 5000.0 radial range for superob box (default 5 km)

del_time 0.5 1/2 time range for superob box (default .5 hours)

elev_angle_max 5.0 max elevation angle (default of 5 deg)

minnum 50 minimum number of samples needed to make a

superob

range_max 100000.0 max radial range in meters to use in constructing

superobs (default 100km)

l2superob_only .false. if true, then process level 2 data creating superobs,

then quit. (added for easier retrospective testing, since

level 2 bufr files are very large and hard to work with)

LAG_DATA Lagrangian data assimilation related

variables

lag_accur 1.0e-6 Accuracy used to decide whether or not a balloon is

on the grid

infile_lag inistate_lag.dat File containing the initial position of the balloon

lag_stepduration 900.0 Duration of one time step for the propagation

model

lag_nmax_bal 1000 Maximum number of balloons at starting time

lag_vorcore_stderr_a 2.0e3 Observation error for vorcore balloon

lag_vorcore_stderr_b 0.0 error = b + a*timestep(in hours)

HYBRID_ENSEMBLE Parameters for use with hybrid ensemble

option

GSI Namelist

 120

l_hyb_ens .false. if true, then turn on hybrid ensemble option

uv_hyb_ens .false. if true, then ensemble perturbation wind variables are

u,v,

otherwise, ensemble perturbation wind variables are

stream, pot. Functions.

q_hyb_ens .false. if true, then use specific humidity ensemble

perturbations, otherwise, use relative humidity

aniso_a_en .false. if true, then use anisotropic localization of hybrid

ensemble control variable a_en.

generate_ens .true. if true, then generate internal ensemble based on

existing background error

n_ens 0 number of ensemble members.

nlon_ens 0 number of longitudes on ensemble grid (may be

different from analysis grid nlon)

nlat_ens 0 number of latitudes on ensemble grid (may be

different from analysis grid nlat)

jcap_ens 0 for global spectral model, spectral truncation

pseudo_hybens .false. if true, turn on pseudo ensemble hybrid for HWRF

merge_two_grid_

ensperts

.false. if true, merge ensemble perturbations from two

forecast domains to analysis domain (one way to deal

with hybrid DA for HWRF moving nest)

regional_ensemble_

option

0 integer, used to select type of ensemble to read in for

regional application. Currently takes values from 1 to

4

=1: use GEFS internally interpolated to ensemble grid.

=2: ensembles are WRF NMM format

=3: ensembles are ARW netcdf format.

=4: ensembles are NEMS NMMB format.
full_ensemble .false. if true, first ensemble perturbation on first guess

istead of on ens mean

betaflg .false. if true, use vertical weighting on beta1_inv and

beta2_inv

coef_bw 0.9 fraction of weight given to the vertical boundaries

when betaflg is true

pwgtflg .false. if true, use vertical integration function on ensemble

contribution of Psfc

jcap_ens_test 0 for global spectral model, test spectral truncation (to

test dual resolution)

beta1_inv 1 - 1/beta1, the weight given to static background error

covariance

- 0 <= beta1_inv <= 1, tuned for optimal

performance

GSI Namelist

 121

- =1, then ensemble information turned off

- =0, then static background turned off

- beta2_inv = 1 - beta1_inv is weight given to

ensemble derived covariance
s_ens_h 2828 homogeneous isotropic horizontal ensemble

localization scale (km)

s_ens_v 30 vertical localization scale (grid units for now)

s_ens_h, s_ens_v, and beta1_inv are tunable

parameters.

readin_

localization

.false. flag to read (.true.)external localization information

file

eqspace_ensgrid .false. if .true., then ensemble grid is equal spaced, staggered

1/2 grid unit off ploes.

if .false., then gaussian grid assumed for ensemble

(global only)

grid_ratio_ens 1 for regional runs, ratio of ensemble grid resolution to

analysis grid resolution

default value = 1 (dual resolution off)

oz_univ_static .false. if true, decouple ozone from other variables and

defaults to static B (ozone only)

write_ens_sprd .false. writing global ensemble spread in byte addressable

format for plotting with grads

enspreproc .false. flag to read(.true.) pre-processed ensemble data

already

rapidrefresh_cldsurf Options for cloud analysis and

surface enhancement for RR

appilcation

dfi_radar_latent_

heat_time_period

30.0 DFI forward integration window in minutes

metar_impact_radius 10.0 metar cloud observation impact radius in

grid number

metar_impact_radius

_lowCloud

4.0 impact radius for METAR cloud

observation that indicate low cloud base

l_gsd_terrain_match

_surfTobs

.false. if .true., GSD terrain match for surface

temperature observation

l_sfcobserror_

ramp_t

.false. namelist logical for adjusting surface

temperature observation error

l_sfcobserror_ .false. namelist logical for adjusting surface

GSI Namelist

 122

ramp_q moisture observation error

l_PBL_pseudo_

SurfobsT

.false. if .true. produce pseudo-obs in PBL layer

based on surface obs T

l_PBL_pseudo_

SurfobsQ

.false. if .true. produce pseudo-obs in PBL layer

based on surface obs Q

l_PBL_pseudo_

SurfobsUV

.false. if .true. produce pseudo-obs in PBL layer

based on surface obs UV

pblH_ration 0.75 percent of the PBL height within which to

add pseudo-obs

pps_press_incr 30hPa pressure increase for each additional

pseudo-obs on top of previous level

l_gsd_limit_ocean_q .false. if .true. do GSD limitation of Q over ocean

l_pw_hgt_adjust .false. if .true. do GSD PW adjustment for model

vs. obs station height

l_limit_pw_innov .false. if .true. do GSD limitation of PW obs

max_innov_pct 0.1 sets limit of PW ob to a percent of the

background value (0-1)

l_cleanSnow_WarmTs .false. if .true. do GSD limitation of using

retrieved snow over warn area (Ts >

r_cleanSnow_WarmTs_threshold)

l_conserve_thetaV .false. if .true. conserve thetaV during moisture

adjustment in cloud analysis

r_cleanSnow_WarmTs

_threshold

8.0 threshold for using retrieved snow over

warn area

i_conserve_thetaV_

iternum

3 iteration number for conserving thetaV

during moisture adjustment

l_gsd_soilTQ_nudge .false. if .true. do GSD GOES cloud building

l_cld_bld .false. if .true. do GSD soil T and Q nudging

based on the lowest t analysis increment

cld_bld_hgt 1200m sets limit below which GOES cloud

building occurs

build_cloud_frac_p 0.95 sets the threshold for building clouds from

satellite

clear_cloud_frac_p 0.1 sets the threshold for clearing clouds from

satellite

nesdis_npts_rad 1 NESDIS cloud product impact radiu (grid

points)

iclean_hydro_withRef 1 if =1, then clean hydrometeors if the grid

GSI Namelist

 123

point has no echo and maxref=0

iclean_hydro_withRef_allcol 0 if =1, then clean whole column

hydrometeors if the observed max ref =0

and satellite cloud shows clean

l_use_2mQ4B .false. if .true. use 2m Q as part of background to

calculate surface Q observation innovation

CHEM Chemistry data assimialtion

berror_chem .false. if berror file is supplied for chemistry

oneobtest_chem .false. single observation test for chemistry

maginnov_chem 30.0 if oneobtest_chem=T magnitude of innovation for

chemistry

magoberr_chem 2.0 if oneobtest_chem=T magnitude of observation

error for chemistry

oneob_type_chem pm2_5 if oneobtest_chem=T type of chemical observation

oblat_chem 45.0 if oneobtest_chem=T latitude of the observation

oblon_chem 270.0 if oneobtest_chem=T longitude of the observation

obpres_chem 1000.0 if oneobtest_chem=T pressure of the observation

diag_incr .false. if user wishes to output to a binary file increment

elev_tolerance 500.0 for surface chemical observation sometimes

elevation (elev_obs) of the measurement is

available (sometimes not).

tunable_error 0.5 tuning parameter to specify representativeness error

for in-situ observations

in_fname cmaq_input.bin name of background file for cmaq

out_fname cmaq_output.bin name analysis file for cmaq

incr_fname chem_increment.

bin

if diag_incr=T name of the binary dump for pm2_5

